Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Neural Eng ; 21(4)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39029495

RESUMO

Objective. Previous preclinical and clinical studies have demonstrated that pudendal nerve is a promising target for restoring bladder control. The spatial proximity between the pudendal nerve and its accompanying blood vessels in the pudendal canal provides an opportunity for endovascular neurostimulation, which is a less invasive approach compared to conventional chronically implanted electrodes. In this study, we investigated the feasibility of excitatory stimulation and kilohertz-frequency block of the compound pudendal nerve in sheep using a stent-mounted electrode array.Approach. In a set of acute animal experiments, a commercially available hexapolar electrode catheter was introduced in the unilateral internal pudendal artery to deliver bipolar electrical stimulation of the adjacent compound pudendal nerve. The catheter electrode was replaced with a custom-made stent-mounted electrode array and the stimulation sessions were repeated. Global electromyogram activity of the pelvic floor and related sphincter muscles was recorded with a monopolar electrode placed within the urethra concurrently.Main results. We demonstrated the feasibility of endovascular stimulation of the pudendal nerve with both electrode types. The threshold current of endovascular stimulation was influenced by electrode-nerve distance and electrode orientation. Increasing the axial inter-electrode distance significantly decreased threshold current. Endovascular kilohertz-frequency nerve block was possible with the electrode catheter.Significance. The present study demonstrated that endovascular stimulation of the pudendal nerve with the stent-mounted electrode array may be a promising less invasive alternative to conventional implantable electrodes, which has important clinical implications in the treatment of urinary incontinence. Endovascular blocking of pudendal nerve may provide an alternative solution to the bladder-sphincter dyssynergia problem in bladder management for people with spinal cord injury.


Assuntos
Eletrodos Implantados , Procedimentos Endovasculares , Nervo Pudendo , Stents , Animais , Nervo Pudendo/fisiologia , Ovinos , Procedimentos Endovasculares/métodos , Procedimentos Endovasculares/instrumentação , Feminino , Terapia por Estimulação Elétrica/métodos , Terapia por Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Estimulação Elétrica/instrumentação , Eletromiografia/métodos
2.
Sci Rep ; 14(1): 7212, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532013

RESUMO

The endovascular neural interface provides an appealing minimally invasive alternative to invasive brain electrodes for recording and stimulation. However, stents placed in blood vessels have long been known to affect blood flow (haemodynamics) and lead to neointimal growth within the blood vessel. Both the stent elements (struts and electrodes) and blood vessel wall geometries can affect the mechanical environment on the blood vessel wall, which could lead to unfavourable vascular remodelling after stent placement. With increasing applications of stents and stent-like neural interfaces in venous blood vessels in the brain, it is necessary to understand how stents affect blood flow and tissue growth in veins. We explored the haemodynamics of a stent-mounted neural interface in a blood vessel model. Results indicated that blood vessel deformation and tapering caused a substantial change to the lumen geometry and the haemodynamics. The neointimal proliferation was evaluated in sheep implanted with an endovascular neural interface. Analysis showed a negative correlation with the mean Wall Shear Stress pattern. The results presented here indicate that the optimal stent oversizing ratio must be considered to minimise the haemodynamic impact of stenting.


Assuntos
Hemodinâmica , Stents , Animais , Ovinos , Circulação Coronária/fisiologia , Neointima
3.
Int J Biol Macromol ; 262(Pt 1): 130024, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340931

RESUMO

The water-soluble chitosan derivative (WSCD) was made by mixing chitosan with sodium hydroxide, treating the mixture with chloroacetic acid, and then forming a Schiff base with vanillin in an acidic medium. In this study, we examined the corrosion-inhibiting ability of a WSCD on mild steel surfaces in acidic environments. Weight loss, EIS, PDP, LPS, and OCP measurements were used to study the corrosion resistance on mild steel surfaces in 1 M HCl solutions with known concentrations of WSCD. The results show that WSCD functions effectively as a mixed-type anodic and cathodic inhibitor, providing 87 % corrosion inhibition efficiency at 75 ppm. Using SEM to investigate the morphology of corroded mild steel with and without varying amounts of WSCD, impedance measurements show the development of a thin film of inhibitor on the metal surface, the extent of which increases as the inhibitor concentration rises. The WSCD molecule first adsorbs on mild steel and follows Langmuir adsorption isotherm. It is found that the (∆Gads0)adsorption's free energy is -17.473 kJ/mol. The contact angle measurements confirm that the hydrophobicity of the metal surface has increased as a result of the inhibitor's thin film development.


Assuntos
Benzaldeídos , Quitosana , Aço , Corrosão , Água , Propriedades de Superfície , Ácidos
4.
J Neural Eng ; 21(3)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38776894

RESUMO

Objective.Electrical stimulation of peripheral nerves has long been a treatment option to restore impaired neural functions that cannot be restored by conventional pharmacological therapies. Endovascular neurostimulation with stent-mounted electrode arrays is a promising and less invasive alternative to traditional implanted electrodes, which typically require invasive implantation surgery. In this study, we investigated the feasibility of endovascular stimulation of the femoral nerve using a stent-mounted electrode array and compared its performance to that of a commercially available pacing catheter.Approach.In acute animal experiments, a pacing catheter was implanted unilaterally in the femoral artery to stimulate the femoral nerve in a bipolar configuration. Electromyogram of the quadriceps and electroneurogram of a distal branch of the femoral nerve were recorded. After retrieval of the pacing catheter, a bipolar stent-mounted electrode array was implanted in the same artery and the recording sessions were repeated.Main Results.Stimulation of the femoral nerve was feasible with the stent-electrode array. Although the threshold stimulus intensities required with the stent-mounted electrode array (at 100-500µs increasing pulse width, 2.17 ± 0.87 mA-1.00 ± 0.11 mA) were more than two times higher than the pacing catheter electrodes (1.05 ± 0.48 mA-0.57 ± 0.28 mA), we demonstrated that, by reducing the stimulus pulse width to 100µs, the threshold charge per phase and charge density can be reduced to 0.22 ± 0.09µC and 24.62 ± 9.81µC cm-2, which were below the tissue-damaging limit, as defined by the Shannon criteria.Significance.The present study is the first to reportin vivofeasibility and efficiency of peripheral nerve stimulation using an endovascular stent-mounted electrode array.


Assuntos
Eletrodos Implantados , Estudos de Viabilidade , Nervo Femoral , Stents , Nervo Femoral/fisiologia , Animais , Procedimentos Endovasculares/instrumentação , Procedimentos Endovasculares/métodos , Estimulação Elétrica/métodos , Estimulação Elétrica/instrumentação , Masculino , Eletromiografia/métodos
5.
Int J Biol Macromol ; 264(Pt 1): 130151, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403227

RESUMO

BACKGROUND: Reactivation of telomerase is a hallmark of cancer and the majority of cancers over-express telomerase. Telomerase-dependent telomere length maintenance confers immortality to cancer cells. However, telomere length-independent cell survival functions of telomerase also play a critical role in tumorigenesis. Multiple telomerase inhibitors have been developed as therapeutics and include anti-sense oligonucleotides, telomerase RNA component targeting agents, chemical inhibitors of telomerase, small molecule inhibitors of hTERT, and telomerase vaccine. In general, telomerase inhibitors affect cell proliferation and survival of cells depending on the telomere length reduction, culminating in replicative senescence or cell death by crisis. However, most telomerase inhibitors kill cancer cells prior to significant reduction in telomere length, suggesting telomere length independent role of telomerase in early telomere dysfunction-dependent cell death. METHODS: In this study, we explored the mechanism of cell death induced by three prominent telomerase inhibitors utilizing a series of genetically encoded sensor cells including redox and DNA damage sensor cells. RESULTS: We report that telomerase inhibitors induce early cell cycle inhibition, followed by redox alterations at cytosol and mitochondria. Massive mitochondrial oxidation and DNA damage induce classical cell death involving mitochondrial transmembrane potential loss and mitochondrial permeabilization. Real-time imaging of the progression of mitochondrial oxidation revealed that treated cells undergo a biphasic mitochondrial redox alteration during telomerase inhibition, emphasizing the potential role of telomerase in the redox regulation at mitochondria. Additionally, silencing of hTERT confirmed its predominant role in maintaining mitochondrial redox homeostasis. Interestingly, the study also demonstrated that anti-apoptotic Bcl-2 family proteins still confer protection against cell death induced by telomerase inhibitors. CONCLUSION: The study demonstrates that redox alterations and DNA damage contribute to early cell death by telomerase inhibitors and anti-apoptotic Bcl-2 family proteins confer protection from cell death by their ability to safeguard mitochondria from oxidation damage.


Assuntos
Neoplasias , Telomerase , Humanos , Telomerase/genética , Telomerase/metabolismo , Neoplasias/metabolismo , Inibidores Enzimáticos/metabolismo , Morte Celular , Telômero/metabolismo , Apoptose , Mitocôndrias/metabolismo , Oxirredução , Dano ao DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA