Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
New Phytol ; 242(4): 1798-1813, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38155454

RESUMO

It is well understood that agricultural management influences arbuscular mycorrhizal (AM) fungi, but there is controversy about whether farmers should manage for AM symbiosis. We assessed AM fungal communities colonizing wheat roots for three consecutive years in a long-term (> 14 yr) tillage and fertilization experiment. Relationships among mycorrhizas, crop performance, and soil ecosystem functions were quantified. Tillage, fertilizers and continuous monoculture all reduced AM fungal richness and shifted community composition toward dominance of a few ruderal taxa. Rhizophagus and Dominikia were depressed by tillage and/or fertilization, and their abundances as well as AM fungal richness correlated positively with soil aggregate stability and nutrient cycling functions across all or no-tilled samples. In the field, wheat yield was unrelated to AM fungal abundance and correlated negatively with AM fungal richness. In a complementary glasshouse study, wheat biomass was enhanced by soil inoculum from unfertilized, no-till plots while neutral to depressed growth was observed in wheat inoculated with soils from fertilized and conventionally tilled plots. This study demonstrates contrasting impacts of low-input and conventional agricultural practices on AM symbiosis and highlights the importance of considering both crop yield and soil ecosystem functions when managing mycorrhizas for more sustainable agroecosystems.


Assuntos
Produtos Agrícolas , Ecossistema , Fertilizantes , Micorrizas , Microbiologia do Solo , Solo , Triticum , Micorrizas/fisiologia , Solo/química , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Triticum/fisiologia , Produtos Agrícolas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Biomassa , Raízes de Plantas/microbiologia , Fatores de Tempo , Biodiversidade
2.
Mycorrhiza ; 30(1): 79-95, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31970495

RESUMO

This study explores the relationships of AM fungal abundance and diversity with biotic (host plant, ungulate grazing) and abiotic (soil properties, precipitation) factors in the Serengeti National Park, Tanzania. Soil and root samples were collected from grazed and ungrazed plots at seven sites across steep soil fertility and precipitation gradients. AM fungal abundance in the soil was estimated from the density of spores and the concentration of a fatty acid biomarker. Diversity of AM fungi in roots and soils was measured using DNA sequencing and spore identification. AM fungal abundance in soil decreased with grazing and precipitation and increased with soil phosphorus. The community composition of AM fungal DNA in roots and soils differed. Root samples had more AM fungal indicator species associated with biotic factors (host plant species and grazing), and soil samples had more indicator species associated with particular sample sites. These findings suggest that regional edaphic conditions shape the site-level species pool from which plant species actively select root-colonizing fungal assemblages modified by grazing. Combining multiple measurements of AM fungal abundance and community composition provides the most informed assessment of the structure of mycorrhizal fungal communities in natural ecosystems.


Assuntos
Micobioma , Micorrizas , Ecossistema , Fungos , Raízes de Plantas , Solo , Microbiologia do Solo
4.
New Phytol ; 220(4): 1222-1235, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29600518

RESUMO

Nitrogen (N) availability is increasing dramatically in many ecosystems, but the influence of elevated N on the functioning of arbuscular mycorrhizal (AM) fungi in natural ecosystems is not well understood. We measured AM fungal community structure and mycorrhizal function simultaneously across an experimental N addition gradient in an alpine meadow that is limited by N but not by phosphorus (P). AM fungal communities at both whole-plant-community (mixed roots) and single-plant-species (Elymus nutans roots) scales were described using pyro-sequencing, and the mycorrhizal functioning was quantified using a mycorrhizal-suppression treatment in the field (whole-plant-community scale) and a glasshouse inoculation experiment (single-plant-species scale). Nitrogen enrichment progressively reduced AM fungal abundance, changed AM fungal community composition, and shifted mycorrhizal functioning towards parasitism at both whole-plant-community and E. nutans scales. N-induced shifts in AM fungal community composition were tightly linked to soil N availability and/or plant species richness, whereas the shifts in mycorrhizal function were associated with the communities of specific AM fungal lineages. The observed changes in both AM fungal community structure and functioning across an N enrichment gradient highlight that N enrichment of ecosystems that are not P-limited can induce parasitic mycorrhizal functioning and influence plant community structure and ecosystem sustainability.


Assuntos
Pradaria , Micobioma , Micorrizas/efeitos dos fármacos , Micorrizas/fisiologia , Nitrogênio/farmacologia , Micobioma/efeitos dos fármacos , Micorrizas/crescimento & desenvolvimento , Plantas/efeitos dos fármacos , Plantas/microbiologia , Solo/química
5.
Proc Natl Acad Sci U S A ; 111(4): 1237-44, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24474743

RESUMO

Biological market theory has been used successfully to explain cooperative behavior in many animal species. Microbes also engage in cooperative behaviors, both with hosts and other microbes, that can be described in economic terms. However, a market approach is not traditionally used to analyze these interactions. Here, we extend the biological market framework to ask whether this theory is of use to evolutionary biologists studying microbes. We consider six economic strategies used by microbes to optimize their success in markets. We argue that an economic market framework is a useful tool to generate specific and interesting predictions about microbial interactions, including the evolution of partner discrimination, hoarding strategies, specialized versus diversified mutualistic services, and the role of spatial structures, such as flocks and consortia. There is untapped potential for studying the evolutionary dynamics of microbial systems. Market theory can help structure this potential by characterizing strategic investment of microbes across a diversity of conditions.


Assuntos
Comércio , Microbiologia , Comportamento Cooperativo , Simbiose
6.
New Phytol ; 205(4): 1473-1484, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25417818

RESUMO

Mycorrhizal phenotypes arise from interactions among plant and fungal genotypes and the environment. Differences in the stoichiometry and uptake capacity of fungi and plants make arbuscular mycorrhizal (AM) fungi inherently more nitrogen (N) limited and less phosphorus (P) limited than their host plants. Mutualistic phenotypes are most likely in P-limited systems and commensal or parasitic phenotypes in N-limited systems. Carbon (C) limitation is expected to cause phenotypes to shift from mutualism to commensalism and even parasitism. Two experiments compared the influence of fertilizer and shade on mycorrhizas in Andropogon gerardii across three naturally N-limited or P-limited grasslands. A third experiment examined the interactive effects of N and P enrichment and shade on A. gerardii mycorrhizas. Our experiments generated the full spectrum of mycorrhizal phenotypes. These findings support the hypothesis that mutualism is likely in P-limited systems and commensalism or parasitism is likely in N-limited systems. Furthermore, shade decreased C-assimilation and generated less mutualistic mycorrhizal phenotypes with reduced plant and fungal biomass. Soil fertility is a key controller of mycorrhizal costs and benefits and the Law of the Minimum is a useful predictor of mycorrhizal phenotype. In our experimental grasslands arbuscular mycorrhizas can ameliorate P-limitation but not N-limitation.


Assuntos
Modelos Biológicos , Micorrizas/fisiologia , Análise de Variância , Andropogon/metabolismo , Andropogon/microbiologia , Andropogon/efeitos da radiação , Carbono/metabolismo , Fertilizantes , Luz , Micorrizas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Fenótipo , Fósforo/metabolismo , Solo/química
7.
Mol Ecol ; 22(9): 2573-87, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23458035

RESUMO

Arbuscular mycorrhizal (AM) fungi are widespread root symbionts that often improve the fitness of their plant hosts. We tested whether local adaptation in mycorrhizal symbioses would shape the community structure of these root symbionts in a way that maximizes their symbiotic functioning. We grew a native prairie grass (Andropogon gerardii) with all possible combinations of soils and AM fungal inocula from three different prairies that varied in soil characteristics and disturbance history (two native prairie remnants and one recently restored). We identified the AM fungi colonizing A. gerardii roots using PCR amplification and cloning of the small subunit rRNA gene. We observed 13 operational taxonomic units (OTUs) belonging to six genera in three families. Taxonomic richness was higher in the restored than the native prairies with one member of the Gigaspora dominating the roots of plants grown with inocula from native prairies. Inoculum source and the soil environment influenced the composition of AM fungi that colonized plant roots. Correspondingly, host plants and AM fungi responded significantly to the soil-inoculum combinations such that home fungi often had the highest fitness and provided the greatest benefit to A. gerardii. Similar patterns were observed within the soil-inoculum combinations originating from two native prairies, where five sequence types of a single Gigaspora OTU were virtually the only root colonizers. Our results indicate that indigenous assemblages of AM fungi were adapted to the local soil environment and that this process occurred both at a community scale and at the scale of fungal sequence types within a dominant OTU.


Assuntos
Adaptação Fisiológica/genética , Glomeromycota/isolamento & purificação , Raízes de Plantas/microbiologia , Poaceae/microbiologia , Microbiologia do Solo , Clonagem Molecular , Variação Genética , Glomeromycota/classificação , Glomeromycota/genética , Dados de Sequência Molecular , Micorrizas/classificação , Micorrizas/genética , Micorrizas/isolamento & purificação , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Simbiose
8.
Proc Natl Acad Sci U S A ; 107(5): 2093-8, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20133855

RESUMO

Symbioses may be important mechanisms of plant adaptation to their environment. We conducted a reciprocal inoculation experiment to test the hypothesis that soil fertility is a key driver of local adaptation in arbuscular mycorrhizal (AM) symbioses. Ecotypes of Andropogon gerardii from phosphorus-limited and nitrogen-limited grasslands were grown with all possible "home and away" combinations of soils and AM fungal communities. Our results indicate that Andropogon ecotypes adapt to their local soil and indigenous AM fungal communities such that mycorrhizal exchange of the most limiting resource is maximized. Grasses grown in home soil and inoculated with home AM fungi produced more arbuscules (symbiotic exchange structures) in their roots than those grown in away combinations. Also, regardless of the host ecotype, AM fungi produced more extraradical hyphae in their home soil, and locally adapted AM fungi were, therefore, able to sequester more carbon compared with nonlocal fungi. Locally adapted mycorrhizal associations were more mutualistic in the two phosphorus-limited sites and less parasitic at the nitrogen-limited site compared with novel combinations of plants, fungi, and soils. To our knowledge, these findings provide the strongest evidence to date that resource availability generates evolved geographic structure in symbioses among plants and soil organisms. Thus, edaphic origin of AM fungi should be considered when managing for their benefits in agriculture, ecosystem restoration, and soil-carbon sequestration.


Assuntos
Ecossistema , Micorrizas/fisiologia , Simbiose/fisiologia , Adaptação Biológica , Biomassa , Carbono/metabolismo , Meio-Oeste dos Estados Unidos , Micorrizas/crescimento & desenvolvimento , Fósforo/metabolismo , Raízes de Plantas/microbiologia , Poaceae/crescimento & desenvolvimento , Poaceae/microbiologia , Poaceae/fisiologia , Solo/análise , Microbiologia do Solo
9.
New Phytol ; 192(1): 200-214, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21651560

RESUMO

• We tested the prediction that the abundance and diversity of arbuscular mycorrhizal (AM) fungi are influenced by resource availability and plant community composition by examining the joint effects of carbon dioxide (CO(2) ) enrichment, nitrogen (N) fertilization and plant diversity on AM fungi. • We quantified AM fungal spores and extramatrical hyphae in 176 plots after 7 yr of treatment with all combinations of ambient or elevated CO(2) (368 or 560 ppm), with or without N fertilization (0 or 4 g Nm(-2) ), and one (monoculture) or 16 host plant species (polyculture) in the BioCON field experiment at Cedar Creek Ecosystem Science Reserve, Minnesota, USA. • Extramatrical hyphal lengths were increased by CO(2) enrichment, whereas AM spore abundance decreased with N fertilization. Spore abundance, morphotype richness and extramatrical hyphal lengths were all greater in monoculture plots. A structural equation model showed AM fungal biovolume was most influenced by CO(2) enrichment, plant community composition and plant richness, whereas spore richness was most influenced by fungal biovolume, plant community composition and plant richness. • Arbuscular mycorrhizal fungi responded to differences in host community and resource availability, suggesting that mycorrhizal functions, such as carbon sequestration and soil stability, will be affected by global change.


Assuntos
Biodiversidade , Dióxido de Carbono/farmacologia , Ecossistema , Fertilizantes , Micorrizas/efeitos dos fármacos , Nitrogênio/farmacologia , Poaceae/microbiologia , Biomassa , Hifas/efeitos dos fármacos , Minnesota , Modelos Biológicos , Micorrizas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Solo , Microbiologia do Solo , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/fisiologia
10.
Ecol Lett ; 13(3): 394-407, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20100237

RESUMO

Ecology Letters (2010) 13: 394-407 Abstract Mycorrhizal fungi influence plant growth, local biodiversity and ecosystem function. Effects of the symbiosis on plants span the continuum from mutualism to parasitism. We sought to understand this variation in symbiotic function using meta-analysis with information theory-based model selection to assess the relative importance of factors in five categories: (1) identity of the host plant and its functional characteristics, (2) identity and type of mycorrhizal fungi (arbuscular mycorrhizal vs. ectomycorrhizal), (3) soil fertility, (4) biotic complexity of the soil and (5) experimental location (laboratory vs. field). Across most subsets of the data, host plant functional group and N-fertilization were surprisingly much more important in predicting plant responses to mycorrhizal inoculation ('plant response') than other factors. Non-N-fixing forbs and woody plants and C(4) grasses responded more positively to mycorrhizal inoculation than plants with N-fixing bacterial symbionts and C(3) grasses. In laboratory studies of the arbuscular mycorrhizal symbiosis, plant response was more positive when the soil community was more complex. Univariate analyses supported the hypothesis that plant response is most positive when plants are P-limited rather than N-limited. These results emphasize that mycorrhizal function depends on both abiotic and biotic context, and have implications for plant community theory and restoration ecology.


Assuntos
Fungos/fisiologia , Micorrizas/fisiologia , Plantas/microbiologia , Simbiose , Ecologia , Fixação de Nitrogênio , Desenvolvimento Vegetal , Microbiologia do Solo
11.
New Phytol ; 185(3): 631-47, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19968797

RESUMO

Despite the fact that arbuscular mycorrhizal (AM) associations are among the most ancient, abundant and important symbioses in terrestrial ecosystems, there are currently few unifying theories that can be used to help understand the factors that control their structure and function. This review explores how a stoichiometric perspective facilitates integration of three complementary ecological and evolutionary models of mycorrhizal structure and function. AM symbiotic function should be governed by the relative availability of carbon, nitrogen and phosphorus (trade balance model) and allocation to plant and fungal structures should depend on the availabilities of these resources (functional equilibrium model). Moreover, in an evolutionary framework, communities of plants and AM fungi are predicted to adapt to each other and their local soil environment (co-adaptation model). Anthropogenic enrichment of essential resources in the environment is known to impact AM symbioses. A more predictive theory of AM structure and function will help us to better understand how these impacts may influence plant communities and ecosystem properties.


Assuntos
Evolução Biológica , Micorrizas/metabolismo , Adaptação Fisiológica , Ecossistema , Modelos Biológicos , Simbiose
12.
Front Plant Sci ; 11: 627345, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33574827

RESUMO

Studies in natural ecosystems show that adaptation of arbuscular mycorrhizal (AM) fungi and other microbial plant symbionts to local environmental conditions can help ameliorate stress and optimize plant fitness. This local adaptation arises from the process of multilevel selection, which is the simultaneous selection of a hierarchy of groups. Studies of multilevel selection in natural ecosystems may inform the creation of sustainable agroecosystems through developing strategies to effectively manage crop microbiomes including AM symbioses. Field experiments show that the species composition of AM fungal communities varies across environmental gradients, and that the biomass of AM fungi and their benefits for plants generally diminish when fertilization and irrigation eliminate nutrient and water limitations. Furthermore, pathogen protection by mycorrhizas is only important in environments prone to plant damage due to pathogens. Consequently, certain agricultural practices may inadvertently select for less beneficial root symbioses because the conventional agricultural practices of fertilization, irrigation, and use of pesticides can make these symbioses superfluous for optimizing crop performance. The purpose of this paper is to examine how multilevel selection influences the flow of matter, energy, and genetic information through mycorrhizal microbiomes in natural and agricultural ecosystems, and propose testable hypotheses about how mycorrhizae may be actively managed to increase agricultural sustainability.

13.
Front Plant Sci ; 10: 1018, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475019

RESUMO

Plants may actively cultivate microorganisms in their roots and rhizosphere that enhance their nutrition. To develop cropping strategies that substitute mineral fertilizers for beneficial root symbioses, we must first understand how microbial communities associated with plant roots differ among plant taxa and how they respond to fertilization. Arbuscular mycorrhizal (AM) fungi and rhizobacteria are of particular interest because they enhance nutrient availability to plants and perform a suite of nutrient cycling functions. The purpose of this experiment is to examine the root and soil microbiome in a long-term switchgrass (Panicum virgatum) biofuel feedstock experiment and determine how AM fungi and rhizobacteria respond to plant diversity and soil fertility. We hypothesize that intra- and interspecific plant diversity, nitrogen fertilization (+N), and their interaction will influence the biomass and community composition of AM fungi and rhizobacteria. We further hypothesize that +N will reduce the abundance of nitrogenase-encoding nifH genes on the rhizoplane. Roots and soils were sampled from three switchgrass cultivars (Cave-in-Rock, Kanlow, Southlow) grown in monoculture, intraspecific mixture, and interspecific planting mixtures with either Andropogon gerardii or diverse native tallgrass prairie species. Molecular sequencing was performed on root and soil samples, fatty acid extractions were assessed to determine microbial biomass, and quantitative polymerase chain reaction (qPCR) was performed on nifH genes from the rhizoplane. Sequence data determined core AM fungal and bacterial microbiomes and indicator taxa for plant diversity and +N treatments. We found that plant diversity and +N influenced AM fungal biomass and community structure. Across all plant diversity treatments, +N reduced the biomass of AM fungi and nifH gene abundance by more than 40%. The AM fungal genus Scutellospora was an indicator for +N, with relative abundance significantly greater under +N and in monoculture treatments. Community composition of rhizobacteria was influenced by plant diversity but not by +N. Verrucomicrobia and Proteobacteria were the dominant bacterial phyla in both roots and soils. Our findings provide evidence that soil fertility and plant diversity structure the root and soil microbiome. Optimization of soil communities for switchgrass production must take into account differences among cultivars and their unique responses to shifts in soil fertility.

14.
Ecology ; 89(10): 2868-78, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18959324

RESUMO

Human activities release tremendous amounts of nitrogenous compounds into the atmosphere. Wet and dry deposition distributes this airborne nitrogen (N) on otherwise pristine ecosystems. This eutrophication process significantly alters the species composition of native grasslands; generally a few nitrophilic plant species become dominant while many other species disappear. The functional equilibrium model predicts that, compared to species that decline in response to N enrichment, nitrophilic grass species should respond to N enrichment with greater biomass allocation aboveground and reduced allocation to roots and mycorrhizas. The mycorrhizal feedback hypothesis states that the composition of mycorrhizal fungal communities may influence the composition of plant communities, and it predicts that N enrichment may generate reciprocal shifts in the species composition of mycorrhizal fungi and plants. We tested these hypotheses with experiments that compared biomass allocation and mycorrhizal function of four grass ecotypes (three species), two that gained and two that lost biomass and cover in response to long-term N enrichment experiments at Cedar Creek and Konza Long-Term Ecological Research grasslands. Local grass ecotypes were grown in soil from their respective sites and inoculated with whole-soil inoculum collected from either fertilized (FERT) or unfertilized (UNFERT) plots. Our results strongly support the functional equilibrium model. In both grassland systems the nitrophilic grass species grew taller, allocated more biomass to shoots than to roots, and formed fewer mycorrhizas compared to the grass species that it replaced. Our results did not fully support the hypothesis that N-induced changes in the mycorrhizal fungal community were drivers of the plant community shifts that accompany N eutrophication. The FERT and UNFERT soil inoculum influenced the growth of the grasses differently, but this varied with site and grass ecotype in both expected and unexpected ways suggesting that ambient soil fertility or other factors may be interacting with mycorrhizal feedbacks.


Assuntos
Biodiversidade , Eutrofização , Fertilizantes , Micorrizas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Poaceae/crescimento & desenvolvimento , Biomassa , Ecossistema , Micorrizas/metabolismo , Poaceae/classificação , Poaceae/metabolismo , Poaceae/microbiologia , Solo/análise , Solo/normas , Microbiologia do Solo , Especificidade da Espécie
15.
Sci Data ; 3: 160028, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27163938

RESUMO

Plants form belowground associations with mycorrhizal fungi in one of the most common symbioses on Earth. However, few large-scale generalizations exist for the structure and function of mycorrhizal symbioses, as the nature of this relationship varies from mutualistic to parasitic and is largely context-dependent. We announce the public release of MycoDB, a database of 4,010 studies (from 438 unique publications) to aid in multi-factor meta-analyses elucidating the ecological and evolutionary context in which mycorrhizal fungi alter plant productivity. Over 10 years with nearly 80 collaborators, we compiled data on the response of plant biomass to mycorrhizal fungal inoculation, including meta-analysis metrics and 24 additional explanatory variables that describe the biotic and abiotic context of each study. We also include phylogenetic trees for all plants and fungi in the database. To our knowledge, MycoDB is the largest ecological meta-analysis database. We aim to share these data to highlight significant gaps in mycorrhizal research and encourage synthesis to explore the ecological and evolutionary generalities that govern mycorrhizal functioning in ecosystems.


Assuntos
Bases de Dados Factuais , Micorrizas , Plantas , Simbiose , Biomassa , Filogenia , Plantas/microbiologia
16.
Ecol Appl ; 3(4): 749-757, 1993 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27759303

RESUMO

It has been noted previously that nutrient-stressed plants generally release more soluble carbohydrate in root exudates and consequently support more mycorrhizae than plants supplied with ample nutrients. Fertilization may select strains of vesicular-arbuscular mycorrhizal (VAM) fungi that are inferior mutualists if the same characteristics that make a VAM fungus successful in roots with a lowered carbohydrate content also reduce the benefits that the fungus provides a host plant. This two-phase study experimentally tests the hypothesis that fertilizing low-nutrient soil selects VAM fungi that are inferior mutualists. The first phase examines the effects of chemical fertilizers on the species composition of VAM fungal communities in long-term field plots. The second phase measures the effects of VAM fungal assemblages from fertilized and unfertilized plots on big bluestem grass grown in a greenhouse. The field results indicate that 8 yr of fertilization altered the species composition of VAM fungal communities. Relative abundance of Gigaspora gigantea, Gigaspora margarita, Scutellispora calospora, and Glomus occultum decreased while Glomus intraradix increased in response to fertilization. Results from the greenhouse experiment show that big bluestem colonized with VAM fungi from fertilized soil were smaller after 1 mo and produced fewer inflorescences at 3 mo than big bluestem colonized with VAM fungi from unfertilized soil. Fungal structures within big bluestem roots suggest that VAM fungi from fertilized soil exerted a higher net carbon cost on their host than VAM fungi from unfertilized soil. VAM fungi from fertilized soil produced fewer hyphae and arbuscules (and consequently provided their host with less inorganic nutrients from the soil) and produced as many vesicles (and thus provisioned their own storage structures at the same level) as fungi from unfertilized soil. These results support the hypothesis that fertilization selects VAM fungi that are inferior mutualists.

17.
Oecologia ; 86(3): 349-358, 1991 May.
Artigo em Inglês | MEDLINE | ID: mdl-28312920

RESUMO

The species composition of vesicular-arbuscular mycorrhizal (VAM) fungal communities changed during secondary succession of abandoned fields based on a field to forest chronosequence. Twenty-five VAM fungal species were identified. Seven species were clearly early successional and five species were clearly late successional. The total number of VAM fungal species did not increase with successional time, but diversity as measured by the Shannon-Wiener index tended to increase, primarily because the community became more even as a single species, Glomus aggregatum, became less dominant in the older sites. Diversity of the VAM fungal community was positively correlated with soil C and N. The density of VAM fungi, as measured by infectivity and total spore count, first increased with time since abandonment and then decreased in the late successional forest sites. Within 12 abandoned fields, VAM fungal density increased with increasing soil pH, H2O soluble soil C, and root biomass, but was inversely related to extractable soil P and percent cover of non-host plant species. The lower abundance of VAM fungi in the forest sites compared with the field sites agrees with the findings of other workers and corresponds with a shift in the dominant vegetation from herbaceous VAM hosts to woody ectomycorrhizal hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA