Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 37(18)2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30166453

RESUMO

Multi-subunit cullin-RING ligases (CRLs) are the largest family of ubiquitin E3 ligases in humans. CRL activity is tightly regulated to prevent unintended substrate degradation or autocatalytic degradation of CRL subunits. Using a proteomics strategy, we discovered that CRL4AMBRA1 (CRL substrate receptor denoted in superscript) targets Elongin C (ELOC), the essential adapter protein of CRL5 complexes, for polyubiquitination and degradation. We showed that the ubiquitin ligase function of CRL4AMBRA1 is required to disrupt the assembly and attenuate the ligase activity of human CRL5SOCS3 and HIV-1 CRL5VIF complexes as AMBRA1 depletion leads to hyperactivation of both CRL5 complexes. Moreover, CRL4AMBRA1 modulates interleukin-6/STAT3 signaling and HIV-1 infectivity that are regulated by CRL5SOCS3 and CRL5VIF, respectively. Thus, by discovering a substrate of CRL4AMBRA1, ELOC, the shared adapter of CRL5 ubiquitin ligases, we uncovered a novel CRL cross-regulation pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Elonguina/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Proteólise , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Elonguina/genética , Células HEK293 , Infecções por HIV/genética , HIV-1/genética , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Ubiquitina-Proteína Ligases/genética , Produtos do Gene vif do Vírus da Imunodeficiência Humana/genética
2.
Mol Cell Proteomics ; 14(1): 162-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25381059

RESUMO

Although histone acetylation and deacetylation machineries (HATs and HDACs) regulate important aspects of cell function by targeting histone tails, recent work highlights that non-histone protein acetylation is also pervasive in eukaryotes. Here, we use quantitative mass-spectrometry to define acetylations targeted by the sirtuin family, previously implicated in the regulation of non-histone protein acetylation. To identify HATs that promote acetylation of these sites, we also performed this analysis in gcn5 (SAGA) and esa1 (NuA4) mutants. We observed strong sequence specificity for the sirtuins and for each of these HATs. Although the Gcn5 and Esa1 consensus sequences are entirely distinct, the sirtuin consensus overlaps almost entirely with that of Gcn5, suggesting a strong coordination between these two regulatory enzymes. Furthermore, by examining global acetylation in an ada2 mutant, which dissociates Gcn5 from the SAGA complex, we found that a subset of Gcn5 targets did not depend on an intact SAGA complex for targeting. Our work provides a framework for understanding how HAT and HDAC enzymes collaborate to regulate critical cellular processes related to growth and division.


Assuntos
Histona Acetiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirtuínas/metabolismo , Acetilação , Histona Desacetilases/metabolismo , Proteoma
3.
Cell Rep ; 39(2): 110690, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417684

RESUMO

Viruses must effectively remodel host cellular pathways to replicate and evade immune defenses, and they must do so with limited genomic coding capacity. Targeting post-translational modification (PTM) pathways provides a mechanism by which viruses can broadly and rapidly transform a hostile host environment into a hospitable one. We use mass spectrometry-based proteomics to quantify changes in protein abundance and two PTM types-phosphorylation and ubiquitination-in response to HIV-1 infection with viruses harboring targeted deletions of a subset of HIV-1 genes. PTM analysis reveals a requirement for Aurora kinase activity in HIV-1 infection and identified putative substrates of a phosphatase that is degraded during infection. Finally, we demonstrate that the HIV-1 Vpr protein inhibits histone H1 ubiquitination, leading to defects in DNA repair.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , HIV-1/genética , Humanos , Processamento de Proteína Pós-Traducional , Proteômica , Ubiquitinação
4.
J Dairy Res ; 77(2): 199-204, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20380773

RESUMO

The MAC-T cell line has been used extensively to investigate bovine mammary epithelial cell function. A lactogenic phenotype is generally induced in this cell line by a combination of dexamethasone, insulin and prolactin and has typically been assessed by milk protein production. Few studies have focused on identifying other factors that may affect milk protein synthesis in the MAC-T cell line, and none have considered the lipid class distribution of MAC-T cells as a component of the lactogenic phenotype. Growth hormone (GH) has been shown to increase milk protein synthesis both in vivo and in mammary cell models, and has been shown to alter the lipogenic profile of mammary explant models. We tested the hypothesis that MAC-T cells would respond directly to GH and that the response would include alterations to the lipid class distribution as well as to milk protein gene expression, leading to a more appropriate model for mammary cell function than treatment with dexamethasone, insulin and prolactin alone. Differentiated cells expressed GH receptor mRNA, and addition of GH to the differentiation medium significantly induced production of alpha-s1 casein and alpha-lactalbumin mRNA. GH also significantly affected the proportion of triacylglycerol and sphingomyelin. These results indicate that GH is an important factor in inducing a lactogenic phenotype in the MAC-T cell line, and support the possibility of a direct effect of GH on milk synthesis in vivo.


Assuntos
Caseínas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Hormônio do Crescimento/farmacologia , Lactalbumina , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Receptores da Somatotropina , Esfingomielinas/metabolismo , Triglicerídeos/metabolismo , Animais , Caseínas/genética , Caseínas/metabolismo , Bovinos , Diferenciação Celular , Linhagem Celular , Dexametasona/farmacologia , Células Epiteliais/citologia , Feminino , Expressão Gênica , Insulina/farmacologia , Lactalbumina/genética , Lactalbumina/metabolismo , Glândulas Mamárias Animais/citologia , Leite/química , Leite/metabolismo , Prolactina/farmacologia , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo
5.
Cancer Discov ; 8(11): 1474-1489, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30209081

RESUMO

We have mapped a global network of virus-host protein interactions by purification of the complete set of human papillomavirus (HPV) proteins in multiple cell lines followed by mass spectrometry analysis. Integration of this map with tumor genome atlases shows that the virus targets human proteins frequently mutated in HPV- but not HPV+ cancers, providing a unique opportunity to identify novel oncogenic events phenocopied by HPV infection. For example, we find that the NRF2 transcriptional pathway, which protects against oxidative stress, is activated by interaction of the NRF2 regulator KEAP1 with the viral protein E1. We also demonstrate that the L2 HPV protein physically interacts with the RNF20/40 histone ubiquitination complex and promotes tumor cell invasion in an RNF20/40-dependent manner. This combined proteomic and genetic approach provides a systematic means to study the cellular mechanisms hijacked by virally induced cancers.Significance: In this study, we created a protein-protein interaction network between HPV and human proteins. An integrative analysis of this network and 800 tumor mutation profiles identifies multiple oncogenesis pathways promoted by HPV interactions that phenocopy recurrent mutations in cancer, yielding an expanded definition of HPV oncogenic roles. Cancer Discov; 8(11); 1474-89. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 1333.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinogênese/patologia , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/patologia , Interações Hospedeiro-Patógeno , Papillomaviridae/fisiologia , Infecções por Papillomavirus/complicações , Biomarcadores Tumorais/genética , Carcinogênese/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/virologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Mutação , Infecções por Papillomavirus/virologia , Mapas de Interação de Proteínas
6.
Elife ; 42015 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-26297806

RESUMO

Primary microcephaly (MCPH) associated proteins CDK5RAP2, CEP152, WDR62 and CEP63 colocalize at the centrosome. We found that they interact to promote centriole duplication and form a hierarchy in which each is required to localize another to the centrosome, with CDK5RAP2 at the apex, and CEP152, WDR62 and CEP63 at sequentially lower positions. MCPH proteins interact with distinct centriolar satellite proteins; CDK5RAP2 interacts with SPAG5 and CEP72, CEP152 with CEP131, WDR62 with MOONRAKER, and CEP63 with CEP90 and CCDC14. These satellite proteins localize their cognate MCPH interactors to centrosomes and also promote centriole duplication. Consistent with a role for satellites in microcephaly, homozygous mutations in one satellite gene, CEP90, may cause MCPH. The satellite proteins, with the exception of CCDC14, and MCPH proteins promote centriole duplication by recruiting CDK2 to the centrosome. Thus, centriolar satellites build a MCPH complex critical for human neurodevelopment that promotes CDK2 centrosomal localization and centriole duplication.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Linhagem Celular , Humanos , Multimerização Proteica
7.
Cell Rep ; 11(8): 1236-50, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25981045

RESUMO

HIV-1 encodes the accessory protein Vif, which hijacks a host Cullin-RING ubiquitin ligase (CRL) complex as well as the non-canonical cofactor CBFß, to antagonize APOBEC3 antiviral proteins. Non-canonical cofactor recruitment to CRL complexes by viral factors, to date, has only been attributed to HIV-1 Vif. To further study this phenomenon, we employed a comparative approach combining proteomic, biochemical, structural, and virological techniques to investigate Vif complexes across the lentivirus genus, including primate (HIV-1 and simian immunodeficiency virus macaque [SIVmac]) and non-primate (FIV, BIV, and MVV) viruses. We find that CBFß is completely dispensable for the activity of non-primate lentiviral Vif proteins. Furthermore, we find that BIV Vif requires no cofactor and that MVV Vif requires a novel cofactor, cyclophilin A (CYPA), for stable CRL complex formation and anti-APOBEC3 activity. We propose modular conservation of Vif complexes allows for potential exaptation of functions through the acquisition of non-CRL-associated host cofactors while preserving anti-APOBEC3 activity.


Assuntos
Citosina Desaminase/antagonistas & inibidores , Produtos do Gene vif/imunologia , HIV-1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Desaminases APOBEC , Animais , Citidina Desaminase , Humanos , Ligação Proteica , Ovinos , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA