Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 260(2): 143-9, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16842337

RESUMO

The infection process of intracellular opportunistic microsporidia involves the forcible eversion of a coiled hollow polar filament that pierces the host cell membrane, allowing the passage of infectious sporoplasm into the host cell cytoplasm. Although the exact mechanism of spore activation leading to polar filament discharge is unknown, we have shown that spore adherence to host cells, which is mediated by sulfated glycosaminoglycans, may play a vital role. When adherence is inhibited, host cell infection decreases, indicating a direct link between adherence and infection. The goal of this study was to evaluate the effects of exogenous divalent cations on microsporidia spore adherence and infection. Data generated using an in vitro spore adherence assay show that spore adherence is augmented by manganese (Mn2+) and magnesium (Mg2+), but not by calcium (Ca2+). However, each of the three divalent cations contributed to increased host cell infection when included in the assay. Finally, we show that Mn2+ and Mg2+ may activate a constituent on the microsporidia spore, not on the host cell, leading to higher infection efficiency. This report further supports recent evidence that spore adherence to the host cell surface is an important aspect of the microsporidial infection process.


Assuntos
Cátions Bivalentes/farmacologia , Rim/citologia , Rim/microbiologia , Microsporídios/fisiologia , Microsporídios/patogenicidade , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Chlorocebus aethiops , Encephalitozoon/patogenicidade , Encephalitozoon/fisiologia , Microsporídios/efeitos dos fármacos , Coelhos , Esporos Fúngicos/fisiologia , Células Vero
2.
Front Microbiol ; 2: 125, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21687432

RESUMO

The Gram-negative bacterium Salmonella enterica has developed an array of sophisticated tools to manipulate the host cell and establish an intracellular niche, for successful propagation as a facultative intracellular pathogen. While Salmonella exerts diverse effects on its host cell, only the cell biology of the classic "trigger"-mediated invasion process and the subsequent development of the Salmonella-containing vacuole have been investigated extensively. These processes are dependent on cohorts of effector proteins translocated into host cells by two type III secretion systems (T3SS), although T3SS-independent mechanisms of entry may be important for invasion of certain host cell types. Recent studies into the intracellular lifestyle of Salmonella have provided new insights into the mechanisms used by this pathogen to modulate its intracellular environment. Here we discuss current knowledge of Salmonella-host interactions including invasion and establishment of an intracellular niche within the host.

3.
Int J Microbiol ; 20102010.
Artigo em Inglês | MEDLINE | ID: mdl-20811483

RESUMO

Microsporidia spore surface proteins are an important, under investigated aspect of spore/host cell attachment and infection. For comparison analysis of surface proteins, we required an antibody control specific for an intracellular protein. An endoplasmic reticulum-associated heat shock protein 70 family member (Hsp70; ECU02_0100; "C1") was chosen for further analysis. DNA encoding the C1 hsp70 was amplified, cloned and used to heterologously express the C1 Hsp70 protein, and specific antiserum was generated. Two-dimensional Western blotting analysis showed that the purified antibodies were monospecific. Immunoelectron microscopy of developing and mature E. cuniculi spores revealed that the protein localized to internal structures and not to the spore surface. In spore adherence inhibition assays, the anti-C1 antibodies did not inhibit spore adherence to host cell surfaces, whereas antibodies to a known surface adhesin (EnP1) did so. In future studies, the antibodies to the 'C1' Hsp70 will be used to delineate spore surface protein expression.

4.
Eukaryot Cell ; 6(8): 1354-62, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17557882

RESUMO

Microsporidia are spore-forming fungal pathogens that require the intracellular environment of host cells for propagation. We have shown that spores of the genus Encephalitozoon adhere to host cell surface glycosaminoglycans (GAGs) in vitro and that this adherence serves to modulate the infection process. In this study, a spore wall protein (EnP1; Encephalitozoon cuniculi ECU01_0820) from E. cuniculi and Encephalitozoon intestinalis is found to interact with the host cell surface. Analysis of the amino acid sequence reveals multiple heparin-binding motifs, which are known to interact with extracellular matrices. Both recombinant EnP1 protein and purified EnP1 antibody inhibit spore adherence, resulting in decreased host cell infection. Furthermore, when the N-terminal heparin-binding motif is deleted by site-directed mutagenesis, inhibition of adherence is ablated. Our transmission immunoelectron microscopy reveals that EnP1 is embedded in the microsporidial endospore and exospore and is found in high abundance in the polar sac/anchoring disk region, an area from which the everting polar tube is released. Finally, by using a host cell binding assay, EnP1 is shown to bind host cell surfaces but not to those that lack surface GAGs. Collectively, these data show that given its expression in both the endospore and the exospore, EnP1 is a microsporidian cell wall protein that may function both in a structural capacity and in modulating in vitro host cell adherence and infection.


Assuntos
Parede Celular/química , Encephalitozoon/química , Proteínas Fúngicas/química , Esporos Fúngicos/química , Sequência de Aminoácidos , Animais , Western Blotting , Células CHO/parasitologia , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Cricetulus , Proteínas Fúngicas/genética , Interações Hospedeiro-Parasita/fisiologia , Dados de Sequência Molecular , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Esporos Fúngicos/fisiologia , Células Vero/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA