Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol Inform ; 12: 34, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760331

RESUMO

BACKGROUND: Tumor heterogeneity is increasingly being recognized as a major source of variability in the histopathological assessment of drug responses. Quantitative analysis of immunohistochemistry (IHC) and immunofluorescence (IF) images using biomarkers that capture spatialpatterns of distinct tumor biology and drug concentration in tumors is of high interest to the field. METHODS: We have developed an image analysis pipeline to measure drug response using IF and IHC images along spatial gradients of local drug release from a tumor-implantable drug delivery microdevice. The pipeline utilizes a series of user-interactive python scripts and CellProfiler pipelines with custom modules to perform image and spatial analysis of regions of interest within whole-slide images. RESULTS: Worked examples demonstrate that intratumor measurements such as apoptosis, cell proliferation, and immune cell population density can be quantitated in a spatially and drug concentration-dependent manner, establishing in vivo profiles of pharmacodynamics and pharmacokinetics in tumors. CONCLUSIONS: Spatial image analysis of tumor response along gradients of local drug release is achievable in high throughput. The major advantage of this approach is the use of spatially aware annotation tools to correlate drug gradients with drug effects in tumors in vivo.

2.
Cell Syst ; 9(1): 74-92.e8, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31302152

RESUMO

There is an unmet need for new antimitotic drug combinations that target cancer-specific vulnerabilities. Based on our finding of elevated biomolecule oxidation in mitotically arrested cancer cells, we combined Plk1 inhibitors with TH588, an MTH1 inhibitor that prevents detoxification of oxidized nucleotide triphosphates. This combination showed robust synergistic killing of cancer, but not normal, cells that, surprisingly, was MTH1-independent. To dissect the underlying synergistic mechanism, we developed VISAGE, a strategy integrating experimental synergy quantification with computational-pathway-based gene expression analysis. VISAGE predicted, and we experimentally confirmed, that this synergistic combination treatment targeted the mitotic spindle. Specifically, TH588 binding to ß-tubulin impaired microtubule assembly, which when combined with Plk1 blockade, synergistically disrupted mitotic chromosome positioning to the spindle midzone. These findings identify a cancer-specific mitotic vulnerability that is targetable using Plk1 inhibitors with microtubule-destabilizing agents and highlight the general utility of the VISAGE approach to elucidate molecular mechanisms of drug synergy.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores do Crescimento/uso terapêutico , Neoplasias/tratamento farmacológico , Pirimidinas/uso terapêutico , Fuso Acromático/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Biologia Computacional , Enzimas Reparadoras do DNA/antagonistas & inibidores , Sinergismo Farmacológico , Perfilação da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Ligação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Fuso Acromático/fisiologia , Tubulina (Proteína)/metabolismo , Quinase 1 Polo-Like
3.
Science ; 357(6356): 1156-1160, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28912244

RESUMO

Growing evidence suggests that microbes can influence the efficacy of cancer therapies. By studying colon cancer models, we found that bacteria can metabolize the chemotherapeutic drug gemcitabine (2',2'-difluorodeoxycytidine) into its inactive form, 2',2'-difluorodeoxyuridine. Metabolism was dependent on the expression of a long isoform of the bacterial enzyme cytidine deaminase (CDDL), seen primarily in Gammaproteobacteria. In a colon cancer mouse model, gemcitabine resistance was induced by intratumor Gammaproteobacteria, dependent on bacterial CDDL expression, and abrogated by cotreatment with the antibiotic ciprofloxacin. Gemcitabine is commonly used to treat pancreatic ductal adenocarcinoma (PDAC), and we hypothesized that intratumor bacteria might contribute to drug resistance of these tumors. Consistent with this possibility, we found that of the 113 human PDACs that were tested, 86 (76%) were positive for bacteria, mainly Gammaproteobacteria.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/microbiologia , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/microbiologia , Animais , Neoplasias do Colo/microbiologia , Desoxicitidina/uso terapêutico , Gammaproteobacteria/isolamento & purificação , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mycoplasma hyorhinis/isolamento & purificação , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/microbiologia , Gencitabina , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA