Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 590(7844): 85-88, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536647

RESUMO

The transplutonium elements (atomic numbers 95-103) are a group of metals that lie at the edge of the periodic table. As a result, the patterns and trends used to predict and control the physics and chemistry for transition metals, main-group elements and lanthanides are less applicable to transplutonium elements. Furthermore, understanding the properties of these heavy elements has been restricted by their scarcity and radioactivity. This is especially true for einsteinium (Es), the heaviest element on the periodic table that can currently be generated in quantities sufficient to enable classical macroscale studies1. Here we characterize a coordination complex of einsteinium, using less than 200 nanograms of 254Es (with half-life of 275.7(5) days), with an organic hydroxypyridinone-based chelating ligand. X-ray absorption spectroscopic and structural studies are used to determine the energy of the L3-edge and a bond distance of einsteinium. Photophysical measurements show antenna sensitization of EsIII luminescence; they also reveal a hypsochromic shift on metal complexation, which had not previously been observed in lower-atomic-number actinide elements. These findings are indicative of an intermediate spin-orbit coupling scheme in which j-j coupling (whereby single-electron orbital angular momentum and spin are first coupled to form a total angular momentum, j) prevails over Russell-Saunders coupling. Together with previous actinide complexation studies2, our results highlight the need to continue studying the unusual behaviour of the actinide elements, especially those that are scarce and short-lived.

2.
Nature ; 599(7885): 421-424, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34789902

RESUMO

Californium (Cf) is currently the heaviest element accessible above microgram quantities. Cf isotopes impose severe experimental challenges due to their scarcity and radiological hazards. Consequently, chemical secrets ranging from the accessibility of 5f/6d valence orbitals to engage in bonding, the role of spin-orbit coupling in electronic structure, and reactivity patterns compared to other f elements, remain locked. Organometallic molecules were foundational in elucidating periodicity and bonding trends across the periodic table1-3, with a twenty-first-century renaissance of organometallic thorium (Th) through plutonium (Pu) chemistry4-12, and to a smaller extent americium (Am)13, transforming chemical understanding. Yet, analogous curium (Cm) to Cf chemistry has lain dormant since the 1970s. Here, we revive air-/moisture-sensitive Cf chemistry through the synthesis and characterization of [Cf(C5Me4H)2Cl2K(OEt2)]n from two milligrams of 249Cf. This bent metallocene motif, not previously structurally authenticated beyond uranium (U)14,15, contains the first crystallographically characterized Cf-C bond. Analysis suggests the Cf-C bond is largely ionic with a small covalent contribution. Lowered Cf 5f orbital energy versus dysprosium (Dy) 4f in the colourless, isoelectronic and isostructural [Dy(C5Me4H)2Cl2K(OEt2)]n results in an orange Cf compound, contrasting with the light-green colour typically associated with Cf compounds16-22.

3.
Inorg Chem ; 62(27): 10528-10538, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37379331

RESUMO

Modern molten salt reactor design and the techniques of electrorefining spent nuclear fuels require a better understanding of the chemical and physical behavior of lanthanide/actinide ions with different oxidation states dissolved in various solvent salts. The molecular structures and dynamics that are driven by the short-range interactions between solute cations and anions and long-range solute and solvent cations are still unclear. In order to study the structural change of solute cations caused by different solvent salts, we performed first-principles molecular dynamics simulations in molten salts and extended X-ray absorption fine structure (EXAFS) measurements for the cooled molten salt samples to identify the local coordination environment of Eu2+ and Eu3+ ions in CaCl2, NaCl, and KCl. The simulations reveal that with the increasing polarizing the outer sphere cations from K+ to Na+ to Ca2+, the coordination number (CN) of Cl- in the first solvation shell increases from 5.6 (Eu2+) and 5.9 (Eu3+) in KCl to 6.9 (Eu2+) and 7.0 (Eu3+) in CaCl2. This coordination change is validated by the EXAFS measurements, in which the CN of Cl- around Eu increases from 5 in KCl to 7 in CaCl2. Our simulation shows that the fewer Cl- ions coordinated to Eu leads to a more rigid first coordination shell with longer lifetime. Furthermore, the diffusivities of Eu2+/Eu3+ are related to the rigidity of their first coordination shell of Cl-: the more rigid the first coordination shell is, the slower the solute cations diffuse.

4.
Inorg Chem ; 61(33): 12948-12953, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35939562

RESUMO

Historic perspectives describing f-elements as being redox "inactive" are fading. Researchers continue to discover new oxidation states that are not as inaccessible as once assumed for actinides and lanthanides. Inspired by those contributions, we studied americium(III) oxidation in aqueous media under air using NaBiO3(s). We identified selective oxidation of Am3+(aq) to AmO22+(aq) or AmO21+(aq) could be achieved by changing the aqueous matrix identity. AmO22+(aq) formed in H3PO4(aq) (1 M) and AmO21+(aq) formed in dilute HCl(aq) (0.1 M). These americyl products were stable for weeks in solution. Also included is a method to recover 243Am from the americium and bismuth mixtures generated during these studies.

5.
Langmuir ; 37(30): 9222-9231, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34279965

RESUMO

Functionalization of diamond surfaces with TEMPO and other surface paramagnetic species represents one approach to the implementation of novel chemical detection schemes that make use of shallow quantum color defects such as silicon-vacancy (SiV) and nitrogen-vacancy (NV) centers. Yet, prior approaches to quantum-based chemical sensing have been hampered by the absence of high-quality surface functionalization schemes for linking radicals to diamond surfaces. Here, we demonstrate a highly controlled approach to the functionalization of diamond surfaces with carboxylic acid groups via all-carbon tethers of different lengths, followed by covalent chemistry to yield high-quality, TEMPO-modified surfaces. Our studies yield estimated surface densities of 4-amino-TEMPO of approximately 1.4 molecules nm-2 on nanodiamond (varying with molecular linker length) and 3.3 molecules nm-2 on planar diamond. These values are higher than those reported previously using other functionalization methods. The ζ-potential of nanodiamonds was used to track reaction progress and elucidate the regioselectivity of the reaction between ethenyl and carboxylate groups and surface radicals.

6.
J Am Chem Soc ; 141(43): 17370-17381, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31584807

RESUMO

The reductive cleavage of aryl ether linkages is a key step in the disassembly of lignin to its monolignol components, where selectivity is determined by the kinetics of multiple parallel and consecutive liquid-phase reactions. Triphasic hydrogenolysis of 13C-labeled benzyl phenyl ether (BPE, a model compound for the major ß-O-4 linkage in lignin), catalyzed by Ni/γ-Al2O3, was observed directly at elevated temperatures (150-175 °C) and pressures (79-89 bar) using operando magic-angle spinning NMR spectroscopy. Liquid-vapor partitioning in the NMR rotor was quantified using the 13C NMR resonances for the 2-propanol solvent, whose chemical shifts report on the internal reactor temperature. At 170 °C, BPE is converted to toluene and phenol with k1 = 0.17 s-1 gcat-1 and an apparent activation barrier of (80 ± 8) kJ mol-1. Subsequent phenol hydrogenation occurs much more slowly (k2 = 0.0052 s-1 gcat-1 at 170-175 °C), such that cyclohexanol formation is significant only at higher temperatures. Toluene is stable under these reaction conditions, but its methyl group undergoes facile H/D exchange (k3 = 0.046 s-1 gcat-1 at 175 °C). While the source of the reducing equivalents for both hydrogenolysis and hydrogenation is exclusively H2/D2(g) rather than the alcohol solvent at these temperatures, the initial isotopic composition of adsorbed H/D on the catalyst surface is principally determined by the solvent isotopic composition (2-PrOH/D). All reactions are preceded by a pronounced induction period associated with catalyst activation. In air, Ni nanoparticles are passivated by a surface oxide monolayer, whose removal under H2 proceeds with an apparent activation barrier of (72 ± 13) kJ mol-1. The operando NMR spectra provide molecularly specific, time-resolved information about the multiple simultaneous and sequential processes as they occur at the solid-liquid interface.

7.
Inorg Chem ; 58(13): 8739-8749, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31198031

RESUMO

Thiolates are a widely used ligand class for the stabilization of M(0)-containing gold and silver nanoclusters. Curiously, though, very few thiolate-stabilized Cu nanoclusters are known. Herein, we report an examination of the reactivity of RSH (R = CH2CH2Ph, n-Bu, n-C12H25) with Cu2+ under anhydrous conditions. These reactions result in the formation of fluorescent "Atlas-sphere"-type copper thiolate nanoclusters, including [Cu12(SR')6Cl12][(Cu(R'SH))6] (2, R' = nBu) and [H(THF)2]2[Cu17(SR'')6Cl13(THF)2(R''SH)3] (3, R'' = CH2CH2Ph), which were characterized by X-ray crystallography, electrospray ionization mass spectrometry, NMR spectroscopy, as well as X-ray absorption near-edge structure and extended X-ray absorption fine structure (EXAFS) spectroscopies. Consistent with our X-ray crystallographic results, the edge energies of 2 and 3 suggest they are constructed exclusively with Cu(I) ions. Similarly, EXAFS of 2 and 3 reveals long Cu-Cu pathlengths, which is also consistent with their X-ray crystal structures. Given these results, as well as past work on Cu2+/thiol reactivity, we suggest that Cu(0) is unlikely to be formed by the reaction of Cu2+ with a thiol and that previous reports of Cu(0)-containing nanoclusters synthesized by reaction of Cu2+ with thiols are likely erroneous.

8.
J Am Chem Soc ; 140(1): 394-400, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29211459

RESUMO

The development of atomically precise nanoclusters (APNCs) protected by organometallic ligands, such as acetylides and hydrides, is an emerging area of nanoscience. In principle, these organometallic APNCs should not require harsh pretreatment for activation toward catalysis, such as calcination, which can lead to sintering. Herein, we report the synthesis of the mixed-valent organometallic copper APNC, [Cu20(CCPh)12(OAc)6)] (1), via reduction of Cu(OAc) with Ph2SiH2 in the presence of phenylacetylene. This cluster is a rare example of a two-electron copper superatom, and the first to feature a tetrahedral [Cu4]2+ core, which is a unique "kernel" for a Cu-only superatom. Complex 1 can be readily immobilized on dry, partially dehydroxylated silica, a process that cleanly results in release of 1 equiv of phenylacetylene per Cu20 cluster. Cu K-edge EXAFS confirms that the immobilized cluster 2 is structurally similar to 1. In addition, both 1 and 2 are effective catalysts for [3+2] cycloaddition reactions between alkynes and azides (i.e., "Click" reactions) at room temperature. Significantly, neither cluster requires any pretreatment for activation toward catalysis. Moreover, EXAFS analysis of 2 after catalysis demonstrates that the cluster undergoes no major structural or nuclearity changes during the reaction, consistent with our observation that supported cluster 2 is more stable than unsupported cluster 1 under "Click" reaction conditions.


Assuntos
Química Click , Cobre/química , Nanoestruturas/química , Compostos Organometálicos/síntese química , Dióxido de Silício/química , Reação de Cicloadição , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/química
9.
Langmuir ; 32(39): 10113-10119, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27607195

RESUMO

Surface patterns over multiple length scales are known to influence various biological processes. Here we report the synthesis and characterization of new, two-component xerogel thin films derived from carboxyethylsilanetriol (COE) and tetraethoxysilane (TEOS). Atomic force microscopy (AFM) reveals films surface with branched and hyper branched architectures that are ∼2 to 30 µm in diameter, that extend ∼3 to 1300 nm above the film base plane with surface densities that range from 2 to 77% surface area coverage. Colocalized AFM and Raman spectroscopy show that these branched structures are COE-rich domains, which are slightly stiffer (as shown from phase AFM imaging) and exhibit lower capacitive force in comparison with film base plane. Raman mapping reveals there are also discrete domains (≤300 nm in diameter) that are rich in COE dimers and densified TEOS, which do not appear to correspond with any surface structure seen by AFM.

10.
J Am Chem Soc ; 137(41): 13319-24, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26422670

RESUMO

Atomically precise copper nanoclusters (NCs) are of immense interest for a variety of applications, but have remained elusive. Herein, we report the isolation of a copper NC, [Cu25H22(PPh3)12]Cl (1), from the reaction of Cu(OAc) and CuCl with Ph2SiH2, in the presence of PPh3. Complex 1 has been fully characterized, including analysis by X-ray crystallography, XANES, and XPS. In the solid state, complex 1 is constructed around a Cu13 centered-icosahedron and formally features partial Cu(0) character. XANES of 1 reveals a Cu K-edge at 8979.6 eV, intermediate between the edge energies of Cu(0) and Cu(I), confirming our oxidation state assignment. This assignment is further corroborated by determination of the Auger parameter for 1, which also falls between those recorded for Cu(0) and Cu(I).


Assuntos
Cobre/química , Nanoestruturas , Sondas Moleculares , Espectroscopia Fotoeletrônica
11.
Sci Adv ; 10(1): eadj8765, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181087

RESUMO

Numerous technologies-with catalytic, therapeutic, and diagnostic applications-would benefit from improved chelation strategies for heavy alkaline earth elements: Ra2+, Ba2+, and Sr2+. Unfortunately, chelating these metals is challenging because of their large size and weak polarizing power. We found 18-crown-6-tetracarboxylic acid (H4COCO) bound Ra2+, Ba2+, and Sr2+ to form M(HxCOCO)x-2. Upon isolating radioactive 223Ra from its parent radionuclides (227Ac and 227Th), 223Ra2+ reacted with the fully deprotonated COCO4- chelator to generate Ra(COCO)2-(aq) (log KRa(COCO)2- = 5.97 ± 0.01), a rare example of a molecular radium complex. Comparative analyses with Sr2+ and Ba2+ congeners informed on what attributes engendered success in heavy alkaline earth complexation. Chelators with high negative charge [-4 for Ra(COCO)2-(aq)] and many donor atoms [≥11 in Ra(COCO)2-(aq)] provided a framework for stable complex formation. These conditions achieved steric saturation and overcame the weak polarization powers associated with these large dicationic metals.

12.
ACS Meas Sci Au ; 2(4): 351-360, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35996538

RESUMO

The fluorescence intensity emitted by nitrogen-vacancy (NV) centers in diamond nanoparticles can be readily modulated by the application of a magnetic field using a small electromagnet. By acquiring interleaved images acquired in the presence and absence of the magnetic field and performing digital subtraction, the fluorescence intensity of the NV nanodiamond can be isolated from scattering and autofluorescence even when these backgrounds are changing monotonically during the experiments. This approach has the potential to enable the robust identification of nanodiamonds in organisms and other complex environments. Yet, the practical application of magnetic modulation imaging to realistic systems requires the use of quantitative analysis methods based on signal-to-noise considerations. Here, we describe the use of magnetic modulation to analyze the uptake of diamond nanoparticles from an aqueous environment into Caenorhabditis elegans, used here as a model system for identification and quantification of nanodiamonds in complex matrices. Based on the observed signal-to-noise ratio of sets of digitally subtracted images, we show that nanodiamonds can be identified on an individual pixel basis with a >99.95% confidence. To determine whether surface functionalization of the nanodiamond significantly impacted uptake, we used this approach to analyze the presence of nanodiamonds in C. elegans that had been exposed to these functionalized nanodiamonds in the water column, with uptake likely occurring by ingestion. In each case, the images show a significant nanoparticle uptake. However, differences in uptake between the three ligands were not outside of the experimental error, indicating that additional factors beyond the surface charge are important factors controlling uptake. Analysis of the number of pixels above the threshold in individual C. elegans organisms revealed distributions that deviate significantly from a Poisson distribution, suggesting that uptake of nanoparticles may not be a statistically independent event. The results presented here demonstrate that magnetic modulation combined with quantitative analysis of the resulting images can be used to robustly characterize nanoparticle uptake into organisms.

13.
ACS Mater Au ; 2(2): 85-93, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36855764

RESUMO

Silicon-vacancy (SiV) centers in diamond have attracted attention as highly stable fluorophores for sensing and as possible candidates for quantum information science. While prior studies have shown that the formation of hybrid diamond-metal structures can increase the rates of optical absorption and emission, many practical applications require diamond plasmonic structures that are stable in harsh chemical and thermal environments. Here, we demonstrate that Ag nanospheres, produced both in quasi-random arrays by thermal dewetting and in ordered arrays using electron-beam lithography, can be completely encapsulated with a thin diamond coating containing SiV centers, leading to hybrid core-shell nanostructures exhibiting extraordinary chemical and thermal stability as well as enhanced optical properties. Diamond shells with a thickness on the order of 20-100 nm are sufficient to encapsulate and protect the Ag nanostructures with different sizes ranging from 20 nm to hundreds of nanometers, allowing them to withstand heating to temperatures of 1000 °C and immersion in harsh boiling acid for 24 h. Ultrafast photoluminescence lifetime and super-resolution optical imaging experiments were used to study the SiV properties on and off the core-shell structures, which show that the SiV on core-shell structures have higher brightness and faster decay rate. The stability and optical properties of the hybrid Ag-diamond core-shell structures make them attractive candidates for high-efficiency imaging and quantum-based sensing applications.

14.
Chem Commun (Camb) ; 58(78): 10961-10964, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36083292

RESUMO

Plutonium-based technologies would benefit if chemical hazards for purifying plutonium were reduced. One critical processing step where improvements could be impactful is the adjustment of plutonium oxidation-states during separations. This transformation often requires addition of redox agents. Unfortunately, many of the redox agents used previously cannot be used today because their properties are deemed incompatible with modern day processing facilities and waste stream safety requirements. We demonstrated herein that photochemistry can be used as an alternative to those chemical agents. We observed that (1) Pu4+ → Pu3+ and UO22+ → U4+ photoreduction proceeded in HCl(aq) and HNO3(aq) and (2) photogenerated Pu3+(aq) and U4+(aq) could be separated using anion exchange chromatography (high yield, >90%; good separation factor, 322).

15.
Dalton Trans ; 50(43): 15696-15710, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34693951

RESUMO

Controlling structure and reactivity by manipulating the outer-coordination sphere around a given reagent represents a longstanding challenge in chemistry. Despite advances toward solving this problem, it remains difficult to experimentally interrogate and characterize outer-coordination sphere impact. This work describes an alternative approach that quantifies outer-coordination sphere effects. It shows how molten salt metal chlorides (MCln; M = K, Na, n = 1; M = Ca, n = 2) provided excellent platforms for experimentally characterizing the influence of the outer-coordination sphere cations (Mn+) on redox reactions accessible to lanthanide ions; Ln3+ + e1- → Ln2+ (Ln = Eu, Yb, Sm; e1- = electron). As a representative example, X-ray absorption spectroscopy and cyclic voltammetry results showed that Eu2+ instantaneously formed when Eu3+ dissolved in molten chloride salts that had strongly polarizing cations (like Ca2+ from CaCl2) via the Eu3+ + Cl1- → Eu2+ + ½Cl2 reaction. Conversely, molten salts with less polarizing outer-sphere M1+ cations (e.g., K1+ in KCl) stabilized Ln3+. For instance, the Eu3+/Eu2+ reduction potential was >0.5 V more positive in CaCl2 than in KCl. In accordance with first-principle molecular dynamics (FPMD) simulations, we postulated that hard Mn+ cations (high polarization power) inductively removed electron density from Lnn+ across Ln-Cl⋯Mn+ networks and stabilized electron-rich and low oxidation state Ln2+ ions. Conversely, less polarizing Mn+ cations (like K1+) left electron density on Lnn+ and stabilized electron-deficient and high-oxidation state Ln3+ ions.

16.
Chem Sci ; 12(15): 5638-5654, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-34168798

RESUMO

The positive impact of having access to well-defined starting materials for applied actinide technologies - and for technologies based on other elements - cannot be overstated. Of numerous relevant 5f-element starting materials, those in complexing aqueous media find widespread use. Consider acetic acid/acetate buffered solutions as an example. These solutions provide entry into diverse technologies, from small-scale production of actinide metal to preparing radiolabeled chelates for medical applications. However, like so many aqueous solutions that contain actinides and complexing agents, 5f-element speciation in acetic acid/acetate cocktails is poorly defined. Herein, we address this problem and characterize Ac3+ and Cm3+ speciation as a function of increasing acetic acid/acetate concentrations (0.1 to 15 M, pH = 5.5). Results obtained via X-ray absorption and optical spectroscopy show the aquo ion dominated in dilute acetic acid/acetate solutions (0.1 M). Increasing acetic acid/acetate concentrations to 15 M increased complexation and revealed divergent reactivity between early and late actinides. A neutral Ac(H2O)6 (1)(O2CMe)3 (1) compound was the major species in solution for the large Ac3+. In contrast, smaller Cm3+ preferred forming an anion. There were approximately four bound O2CMe1- ligands and one to two inner sphere H2O ligands. The conclusion that increasing acetic acid/acetate concentrations increased acetate complexation was corroborated by characterizing (NH4)2M(O2CMe)5 (M = Eu3+, Am3+ and Cm3+) using single crystal X-ray diffraction and optical spectroscopy (absorption, emission, excitation, and excited state lifetime measurements).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA