Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(25): 32748-32761, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38861705

RESUMO

Layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolytes (PEs) is usually performed on a conventional ultrafiltration base substrate (negative zeta potential) by depositing a cationic PE as a first layer. Herein, we report the facile and fast formation of high performance molecular selective membrane by the nonelectrostatic adsorption of anionic PE on the polyvinylidene fluoride (PVDF, zeta potential -17 mV) substrate followed by the electrostatic LbL assembly. Loose nanofiltration membranes have been prepared via both concentration-polarization (CP-LbL, under applied pressure) driven and conventional (C-LbL, dipping) LbL self-assembly. When the first layer is poly(styrene sodium) sulfonic acid, the LbL assembled membrane contains free -SO3- groups and exhibits higher rejection of Na2SO4 and lower rejection of MgCl2. The reversal of salt rejection occurs when the first layer is quaternized polyvinyl imidazole (PVIm-Me). The membrane (five layers) prepared by first depositing PStSO3Na shows higher rejection of several dyes (97.9 to >99.9%), higher NaCl to dye separation factor (52-1800), and higher dye antifouling performance as compared to the membrane prepared by first depositing PVIm-Me (97.5-99.5% dye rejection, separation factor ∼40-200). However, the C-LbL membrane requires a longer time of self-assembly or higher PE concentration to reach a performance close to the CP-LbL membranes. The membranes exhibit excellent pressure, pH (3-12), and salt (60 g L-1) stability. This work provides an insight for the construction of low fouling and high-performance membranes for the fractionation of dye and salt based on the LbL self-assembly sequence.

2.
J Hazard Mater ; 438: 129538, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35999742

RESUMO

Bacterial contaminated water causes potential health issues. Conventional chlorine treatment has shortcomings of environmental hazards and chlorine adoptability by the bacterial cells. Ultrafiltration membrane can intercept bacterial species from feed water. Membrane having anti-biofouling/antifouling properties is needed for the removal of bacteria from feed water. Herein, interpolymer membranes with inherent antimicrobial activity and fouling release property have been prepared by the blend of poly(vinylidene fluoride) (PVDF), poly(vinyl pyrrolidone) and partially long chain alkylated (C12 chain) poly(vinyl imidazole) copolymer (PVIm-co-PVIm-C12) followed by cross-linking of the remaining VIm groups with an activated di-halide compound. The membranes obtain with copolymers of degree of alkyl substitution (DSC12) in the range of 0.75-0.85 and amount in the range of 0.9-3.5% w/w in the casting solutions exhibit good antimicrobial activity (>99 % of inhibition) and dynamic anti-biofouling property. The membrane prepared with 0.9% w/w of the copolymer (DSC12=0.85) shows higher flux recovery ratio (91 % for bacterial filtration and 88 % for protein filtration) compare to a pristine membrane (57 % for bacterial filtration and 58 % for protein filtration). The membrane is able to reject the bacteria completely. Use of small amount of copolymer and facile fabrication of stable anti-biofouling/antifouling membranes show potential for the purification of bacterial contaminated water.


Assuntos
Anti-Infecciosos , Incrustação Biológica , Bactérias , Incrustação Biológica/prevenção & controle , Cloro , Polímeros de Fluorcarboneto , Imidazóis/farmacologia , Membranas Artificiais , Polímeros , Cloreto de Polivinila , Polivinil , Ultrafiltração , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA