Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Biotechnol ; 22(1): 5, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35086540

RESUMO

BACKGROUND: The fall armyworm, Spodoptera frugiperda, is a significant and widespread pest of maize, sorghum, rice, and other economically important crops. Successful management of this caterpillar pest has historically relied upon application of synthetic insecticides and through cultivation of genetically engineered crops expressing insecticidal proteins (Bt crops). Fall armyworm has, however, developed resistance to both synthetic insecticides and Bt crops, which risks undermining the benefits delivered by these important crop protection tools. Previous modelling and empirical studies have demonstrated that releases of insecticide- or Bt-susceptible insects genetically modified to express conditional female mortality can both dilute insecticide resistance and suppress pest populations. RESULTS: Here, we describe the first germline transformation of the fall armyworm and the development of a genetically engineered male-selecting self-limiting strain, OX5382G, which exhibits complete female mortality in the absence of an additive in the larval diet. Laboratory experiments showed that males of this strain are competitive against wild-type males for copulations with wild-type females, and that the OX5382G self-limiting transgene declines rapidly to extinction in closed populations following the cessation of OX5382G male releases. Population models simulating the release of OX5382G males in tandem with Bt crops and non-Bt 'refuge' crops show that OX5382G releases can suppress fall armyworm populations and delay the spread of resistance to insecticidal proteins. CONCLUSIONS: This article describes the development of self-limiting fall armyworm designed to control this pest by suppressing pest populations, and population models that demonstrate its potential as a highly effective method of managing resistance to Bt crops in pest fall armyworm populations. Our results provide early promise for a potentially valuable future addition to integrated pest management strategies for fall armyworm and other pests for which resistance to existing crop protection measures results in damage to crops and impedes sustainable agriculture.


Assuntos
Proteínas Hemolisinas , Inseticidas , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteção de Cultivos , Produtos Agrícolas/genética , Endotoxinas , Feminino , Proteínas Hemolisinas/genética , Inseticidas/farmacologia , Masculino , Plantas Geneticamente Modificadas/metabolismo , Spodoptera/genética , Zea mays/genética
2.
Bioinformatics ; 35(2): 349-351, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29982288

RESUMO

Summary: SATurn is a modular, open-source, bioinformatics platform designed to specifically address the problems of maintenance and longevity commonly associated with the development of simple tools funded by academic research grants. Applications developed in SATurn can be deployed as web-based tools, standalone applications or hybrid tools which have the benefits of both. Within the Structural Genomics Consortium we have utilized SATurn to create a bioinformatics portal which routinely supports a diverse group of scientists including those interested in structural biology, cloning, glycobiology and chemical biology. Availability and implementation: https://github.com/ddamerell53/SATurn. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Internet , Software
3.
Nat Commun ; 8: 14760, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28248310

RESUMO

γδ T cells are considered to be innate-like lymphocytes that respond rapidly to stress without clonal selection and differentiation. Here we use next-generation sequencing to probe how this paradigm relates to human Vδ2neg T cells, implicated in responses to viral infection and cancer. The prevalent Vδ1 T cell receptor (TCR) repertoire is private and initially unfocused in cord blood, typically becoming strongly focused on a few high-frequency clonotypes by adulthood. Clonal expansions have differentiated from a naive to effector phenotype associated with CD27 downregulation, retaining proliferative capacity and TCR sensitivity, displaying increased cytotoxic markers and altered homing capabilities, and remaining relatively stable over time. Contrastingly, Vδ2+ T cells express semi-invariant TCRs, which are present at birth and shared between individuals. Human Vδ1+ T cells have therefore evolved a distinct biology from the Vδ2+ subset, involving a central, personalized role for the γδ TCR in directing a highly adaptive yet unconventional form of immune surveillance.


Assuntos
Células Clonais/citologia , Vigilância Imunológica , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Adulto , Biomarcadores/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Diferenciação Celular , Proliferação de Células , Regiões Determinantes de Complementaridade/genética , Citotoxicidade Imunológica , Variação Genética , Humanos , Interleucina-15/farmacologia , Fenótipo , Doadores de Tecidos , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA