Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Plant Cell Rep ; 42(5): 953-956, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36840757

RESUMO

KEY MESSAGE: T-DNA and CRISPR/Cas9-mediated knockout of polyester synthase-like genes delays flowering time in Arabidopsis thaliana and Medicago sativa (alfalfa). Thus, we here present the first report of edited alfalfa with delayed flowering.


Assuntos
Arabidopsis , Medicago sativa , Medicago sativa/genética , Sistemas CRISPR-Cas/genética , Flores/genética , Arabidopsis/genética
2.
Microb Ecol ; 79(4): 1044-1053, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31828388

RESUMO

We have recently shown that commercial alfalfa inoculants (e.g., Sinorhizobium meliloti B399), which are closely related to the denitrifier model strain Sinorhizobium meliloti 1021, have conserved nitrate, nitrite, and nitric oxide reductases associated with the production of the greenhouse gas nitrous oxide (N2O) from nitrate but lost the N2O reductase related to the degradation of N2O to gas nitrogen. Here, we screened a library of nitrogen-fixing alfalfa symbionts originating from different ecoregions and containing N2O reductase genes and identified novel rhizobia (Sinorhizobium meliloti INTA1-6) exhibiting exceptionally low N2O emissions. To understand the genetic basis of this novel eco-friendly phenotype, we sequenced and analyzed the genomes of these strains, focusing on their denitrification genes, and found mutations only in the nitrate reductase structural gene napC. The evolutionary analysis supported that, in these natural strains, the denitrification genes were inherited by vertical transfer and that their defective nitrate reductase napC alleles emerged by independent spontaneous mutations. In silico analyses showed that mutations in this gene occurred in ssDNA loop structures with high negative free energy (-ΔG) and that the resulting mutated stem-loop structures exhibited increased stability, suggesting the occurrence of transcription-associated mutation events. In vivo assays supported that at least one of these ssDNA sites is a mutational hot spot under denitrification conditions. Similar benefits from nitrogen fixation were observed when plants were inoculated with the commercial inoculant B399 and strains INTA4-6, suggesting that the low-N2O-emitting rhizobia can be an ecological alternative to the current inoculants without resigning economic profitability.


Assuntos
Proteínas de Bactérias/genética , Clima , Mutação , Nitrato Redutases/genética , Óxido Nitroso/metabolismo , Sinorhizobium meliloti/fisiologia , Sequência de Aminoácidos , Argentina , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Nitrato Redutases/química , Nitrato Redutases/metabolismo , Filogenia , Alinhamento de Sequência , Sinorhizobium meliloti/genética
3.
Theor Appl Genet ; 131(5): 1111-1123, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29397404

RESUMO

KEY MESSAGE: A novel process for the production of transgenic alfalfa varieties. Numerous species of legumes, including alfalfa, are critical factors for agroecosystems due to their ability to grow without nitrogen fertilizers derived from non-renewable fossil fuels, their contribution of organic nitrogen to the soil, and their increased nutritional value. Alfalfa is the main source of vegetable proteins in meat and milk production systems worldwide. Despite the economic and ecological importance of this autotetraploid and allogamous forage crop, little progress has been made in the incorporation of transgenic traits into commercial alfalfa. This is mainly due to the unusually strong transgene silencing and complex reproductive behavior of alfalfa, which limit the production of events with high transgene expression and the introgression of selected events within heterogeneous synthetic populations, respectively. In this report, we describe a novel procedure, called supertransgene process, where a glufosinate-tolerant alfalfa variety was developed using a single event containing the BAR transgene associated with an inversion. This approach can be used to maximize the expression of transgenic traits into elite alfalfa germplasm and to reduce the cost of production of transgenic alfalfa cultivars, contributing to the public improvement of this legume forage and other polyploid and outcrossing crop species.


Assuntos
Engenharia Genética/métodos , Medicago sativa/genética , Plantas Geneticamente Modificadas/genética , Produtos Agrícolas/genética , Resistência a Herbicidas/genética , Heterozigoto , Transgenes
4.
J Theor Biol ; 456: 29-33, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30063924

RESUMO

After gene duplication, paralogous genes evolve independently, and consequently, the new proteins encoded by these duplicated genes are exposed to changes in their subcellular location. Although there are increasing evidence that phylogenetically related proteins play different functions in different subcellular compartments, the number of evolutionary steps required for the emergence of a novel protein with a novel subcellular localization remains unclear. Regarding this intriguing topic, here we examine in depth our previous reports describing both intracellular and extracellular polyhydroxybutyrate polymerases (PhaC) in the Pseudomonadales group. The recapitulation of the intracellular-to-extracellular localization switch of PhaC in these strains shows a gradual evolution from a simple cytosolic PhaC form to a complex extracellular PhaC form specifically secreted via the type 1 secretion system. This gradual evolution includes several adaptive and pre-adaptive changes at the genomic, genetic and enzymatic levels, which are intimately related to the lifestyle of organisms during the evolution of protein localization. We conclude that the protein localization switch can be an extremely complex process in nature.


Assuntos
Aciltransferases/metabolismo , Citosol/enzimologia , Evolução Molecular , Espaço Extracelular/enzimologia , Pseudomonas/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Filogenia , Transporte Proteico/genética , Pseudomonas/genética , Alinhamento de Sequência
5.
Microb Ecol ; 76(2): 299-302, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29330647

RESUMO

As other legume crops, alfalfa cultivation increases the emission of the greenhouse gas nitrous oxide (N2O). Since legume-symbiotic nitrogen-fixing bacteria play a crucial role in this emission, it is important to understand the possible impacts of rhizobial domestication on the evolution of denitrification genes. In comparison with the genomes of non-commercial strains, those of commercial alfalfa inoculants exhibit low total genome size, low number of ORFs and high numbers of both frameshifted genes and pseudogenes, suggesting a dramatic loss of genes during bacterial domestication. Genomic analysis focused on denitrification genes revealed that commercial strains have perfectly conserved the nitrate (NAP), nitrite (NIR) and nitric (NOR) reductase clusters related to the production of N2O from nitrate but completely lost the nitrous oxide (NOS) reductase cluster (nosRZDFYLX genes) associated with the reduction of N2O to gas nitrogen. Based on these results, we propose future screenings for alfalfa-nodulating isolates containing both nitrogen fixation and N2O reductase genes for environmental sustainability of alfalfa production.


Assuntos
Bactérias/genética , Medicago sativa/microbiologia , Família Multigênica , Oxirredutases/genética , Rhizobium/genética , Bactérias/metabolismo , Desnitrificação/genética , Evolução Molecular , Tamanho do Genoma , Nitratos/metabolismo , Nitritos/metabolismo , Fixação de Nitrogênio , Óxido Nitroso/metabolismo , Simbiose
7.
J Mol Evol ; 85(3-4): 79-83, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28828631

RESUMO

Despite the vast screening for natural nitrogen-fixing isolates by public and private consortia, no significant progresses in the production of improved nitrogen-fixing inoculants for alfalfa production have been made in the last years. Here, we present a comprehensive characterization of the nitrogen-fixing strain Ensifer meliloti B399 (originally named Rhizobium meliloti 102F34), probably the inoculant most widely used in alfalfa production since the 1960s. Complete nucleotide sequence and genome analysis of strain B399 showed that the three replicons present in this commercial strain and the model bacterium Ensifer meliloti 1021 are extremely similar to each other in terms of nucleotide identity and synteny conservation. In contrast to that observed in B399-treated plants, inoculation of plants with strain 1021 did not improve nitrogen content in different alfalfa cultivars under field conditions, suggesting that a small genomic divergence can drastically impact on the symbiotic phenotype. Therefore, in addition to the traditional screening of natural nitrogen-fixing isolates, the genome engineering of model strains could be an attractive strategy to improve nitrogen fixation in legume crops.


Assuntos
Evolução Biológica , Genoma Bacteriano , Fixação de Nitrogênio/genética , Sinorhizobium meliloti/genética , Simbiose , Genômica , Medicago sativa/genética , Medicago sativa/fisiologia , Análise de Sequência de DNA , Sinorhizobium meliloti/metabolismo , Sinorhizobium meliloti/fisiologia , Sintenia
8.
Biophys J ; 110(6): 1312-21, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27028641

RESUMO

Many plasma membrane channels form oligomeric assemblies, and heterooligomerization has been described as a distinctive feature of some protein families. In the particular case of plant plasma membrane aquaporins (PIPs), PIP1 and PIP2 monomers interact to form heterotetramers. However, the biological properties of the different heterotetrameric configurations formed by PIP1 and PIP2 subunits have not been addressed yet. Upon coexpression of tandem PIP2-PIP1 dimers in Xenopus oocytes, we can address, for the first time to our knowledge, the functional properties of single heterotetrameric species having 2:2 stoichiometry. We have also coexpressed PIP2-PIP1 dimers with PIP1 and PIP2 monomers to experimentally investigate the localization and biological activity of each tetrameric assembly. Our results show that PIP2-PIP1 heterotetramers can assemble with 3:1, 1:3, or 2:2 stoichiometry, depending on PIP1 and PIP2 relative expression in the cell. All PIP2-PIP1 heterotetrameric species localize at the plasma membrane and present the same water transport capacity. Furthermore, the contribution of any heterotetrameric assembly to the total water transport through the plasma membrane doubles the contribution of PIP2 homotetramers. Our results also indicate that plasma membrane water transport can be modulated by the coexistence of different tetrameric species and by intracellular pH. Moreover, all the tetrameric species present similar cooperativity behavior for proton sensing. These findings throw light on the functional properties of PIP tetramers, showing that they have flexible stoichiometry dependent on the quantity of PIP1 and PIP2 molecules available. This represents, to our knowledge, a novel regulatory mechanism to adjust water transport across the plasma membrane.


Assuntos
Aquaporinas/química , Aquaporinas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Multimerização Proteica , Água/metabolismo , Animais , Transporte Biológico , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Concentração de Íons de Hidrogênio , Osmose , Prótons , Xenopus laevis/metabolismo
9.
Plant Cell Rep ; 35(9): 1987-90, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27447893

RESUMO

Alfalfa is the most important forage legume worldwide. However, similar to other minor forage crops, it is usually harvested along with weeds, which decrease its nutrient quality and thus reduce its high value in the market. In addition, weeds reduce alfalfa yield by about 50 %. Although weeds are the limiting factor for alfalfa production, little progress has been made in the incorporation of herbicide-tolerant traits into commercial alfalfa. This is partially due to the high times and costs needed for the production of vast numbers of transgenic alfalfa events as an empirical approach to bypass the random transgenic silencing and for the identification of an event with optimal transgene expression. In this focus article, we report the complete sequence of pPZP200BAR and the extremely high efficiency of this binary vector in alfalfa transformation, opening the way for rapid and inexpensive production of transgenic events for alfalfa improvement public programs.


Assuntos
Custos e Análise de Custo , Biblioteca Gênica , Técnicas Genéticas/economia , Vetores Genéticos/metabolismo , Medicago sativa/genética , Análise de Sequência de DNA , Plantas Geneticamente Modificadas , Plasmídeos/metabolismo , Fatores de Tempo , Transformação Genética
10.
J Membr Biol ; 247(2): 107-25, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24292667

RESUMO

Aquaporins (AQPs) are a family of channel proteins, which transport water and/or small solutes across cell membranes. AQPs are present in Bacteria, Eukarya, and Archaea. The classical AQP evolution paradigm explains the inconsistent phylogenetic trees by multiple transfer events and emphasizes that the assignment of orthologous AQPs is not possible, making it difficult to integrate functional information. Recently, a novel phylogenetic framework of eukaryotic AQP evolution showed congruence between eukaryotic AQPs and organismal trees identifying 32 orthologous clusters in plants and animals (Soto et al. Gene 503:165-176, 2012). In this article, we discuss in depth the methodological strength, the ability to predict functionality and the AQP community perception about the different paradigms of AQP evolution. Moreover, we show an updated review of AQPs transport functions in association with phylogenetic analyses. Finally, we discuss the possible effect of AQP data integration in the understanding of water and solute transport in eukaryotic cells.


Assuntos
Aquaporinas/fisiologia , Animais , Aquaporinas/classificação , Bactérias , Transporte Biológico , Eucariotos , Evolução Molecular , Humanos , Família Multigênica , Filogenia , Plantas , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
11.
Front Plant Sci ; 12: 805032, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046986

RESUMO

Most major crops are polyploid species and the production of genetically engineered cultivars normally requires the introgression of transgenic or gene-edited traits into elite germplasm. Thus, a main goal of plant research is the search of systems to identify dominant mutations. In this article, we show that the Tnt1 element can be used to identify dominant mutations in allogamous tetraploid cultivated alfalfa. Specifically, we show that a single allelic mutation in the MsNAC39 gene produces multifoliate leaves (mfl) alfalfa plants, a pivot trait of breeding programs of this forage species. Finally, we discuss the potential application of a combination of preliminary screening of beneficial dominant mutants using Tnt1 mutant libraries and genome editing via the CRISPR/Cas9 system to identify target genes and to rapidly improve both autogamous and allogamous polyploid crops.

12.
Plant Mol Biol ; 74(1-2): 105-18, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20593222

RESUMO

The plant plasma membrane barrier can express aquaporins (PIP1 and PIP2) that show two intriguing aspects: (1) the potential of modulating whole membrane water permeability by co-expression of both types, which have recently been distinguished for showing a different capacity to reach the plasma membrane; and (2) the faculty to reduce water permeation through the pore after cytosolic acidification, as a consequence of a gating process. Our working hypothesis is that these two key features might enhance plasticity of the membrane water transport capacity if they jointly trigger any cooperative interaction. In previous work, we proved by biophysical approaches that the plasma membrane of the halophyte Beta vulgaris storage root presents highly permeable aquaporins that can be shut down by acidic pH. Root Beta vulgaris PIPs were therefore subcloned and expressed in Xenopus oocytes. Co-expression of BvPIP1;1 and BvPIP2;2 not only enhances oocyte plasma membrane water permeability synergistically but also reinforces pH inhibitory response from partial to complete shut down after cytosolic pH acidification. This pH dependent behavior shows that PIP1-PIP2 co-expression accounts for a different pH sensitivity in comparison with PIP2 expression. These results prove for the first time that PIP co-expression modulates the membrane water permeability through a pH regulatory response, enhancing in this way membrane versatility to adjust its water transfer capacity.


Assuntos
Aquaporinas/metabolismo , Beta vulgaris/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Animais , Aquaporinas/genética , Sequência de Bases , Beta vulgaris/genética , Permeabilidade da Membrana Celular , Primers do DNA/genética , DNA de Plantas/genética , Feminino , Expressão Gênica , Genes de Plantas , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Líquido Intracelular/metabolismo , Dados de Sequência Molecular , Oócitos/metabolismo , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Água/metabolismo , Xenopus laevis
13.
J Glob Antimicrob Resist ; 22: 113-116, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32007617

RESUMO

OBJECTIVES: Unlike higher organisms such as domestic animals and cultivated plants, which display a robust reproductive isolation and limited dispersal ability, microbes exhibit an extremely promiscuous gene flow and can rapidly disperse across the planet by multiple ways. Thus, microbial plasmids, including synthetic replicons, containing antibiotic resistance genes are a serious risk to public health. In this short communication, we explored the presence of synthetic elements in alfalfa symbionts (Ensifer meliloti strains) from agricultural soils. METHODS: A total of 148 E. meliloti isolates from alfalfa plants growing under field conditions were collected from January 2015 to June 2019. Antimicrobial susceptibility testing was performed under laboratory conditions. We identified five kanamycin-resistant E. meliloti strains (named K1-K5). Whole genome sequencing analysis and conjugations were used to identify and study the plasmids of K strains. RESULTS: We found that the genomes of K strains contain ampicillin, kanamycin and tetracycline resistance genes, the reporter gene lacZ from Escherichia coli and multiple cloning sites. These sequences were found within <58-kb plasmids related to the self-transmissible IncP plasmid RP4 from human pathogen Pseudomonas aeruginosa. Conjugation experiments confirmed the ability of K strains to transfer antibiotic resistance via conjugation to the Pseudomonas background. CONCLUSION: In addition to the traditional analysis of plant growth-promoting factors, the commercial deregulation of putative natural inoculants should also include genomic studies to ensure a reasonable balance between innovation and caution.


Assuntos
Antibacterianos , Solo , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Escherichia coli/genética , Humanos , Plasmídeos/genética
14.
FEBS J ; 286(5): 991-1002, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30430736

RESUMO

One of the most intriguing properties of plasma membrane intrinsic protein (PIP) aquaporins (AQPs) is their ability to modulate water transport by sensing different levels of intracellular pH through the assembly of homo- and heterotetrameric molecular species in the plasma membrane. In this work, using a phenomenological modeling approach, we demonstrate that cooperativity in PIP biological response cannot be directly attributed to a cooperative proton binding, as it is usually considered, since it could also be the consequence of a cooperative conformation transition between open and closed states of the channel. Moreover, our results show that, when mixed populations of homo- and heterotetrameric PIP channels are coexpressed in the plasma membrane of the same cell, the observed decrease in the degree of positive cooperativity would result from the simultaneous presence of molecular species with different levels of proton sensing. Indeed, the random mixing between different PIP paralogues as subunits in a single tetramer, plus the possibility of mixed populations of homo- and heterotetrameric PIP channels widen the spectrum of cooperative responses of a cell membrane. Our approach offers a deep understanding of cooperative transport of AQP channels, as members of a multiprotein family where the relevant proton binding sites of each member have not been clearly elucidated yet.


Assuntos
Aquaporinas/metabolismo , Prótons , Proteínas de Xenopus/metabolismo , Animais , Aquaporinas/química , Membrana Celular/metabolismo , Concentração de Íons de Hidrogênio , Conformação Proteica , Água/metabolismo , Proteínas de Xenopus/química , Xenopus laevis
15.
FEBS Lett ; 591(11): 1555-1565, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28486763

RESUMO

Previous works proposed that aquaporins behave as mechanosensitive channels. However, principal issues about mechanosensitivity of aquaporins are not known. In this work, we characterized the mechanosensitive properties of the water channels BvTIP1;2 (TIP1) and BvPIP2;1 (PIP2) from red beet (Beta vulgaris). We simultaneously measured the mechanical behavior and the water transport rates during the osmotic response of emptied-out oocytes expressing TIP1 or PIP2. Our results indicate that TIP1 is a mechanosensitive aquaporin, whereas PIP2 is not. We found that a single exponential function between the osmotic permeability coefficient and the volumetric elastic modulus governs the mechanosensitivity of TIP1. Finally, homology modeling analysis indicates that putative residues involved in mechanosensitivity show different quantity and distribution in TIP1 and PIP2.


Assuntos
Aquaporinas/metabolismo , Beta vulgaris/metabolismo , Membrana Celular/metabolismo , Proteínas de Plantas/metabolismo , Beta vulgaris/genética , Beta vulgaris/fisiologia , Osmose/fisiologia , Proteínas de Plantas/genética
16.
J Biotechnol ; 263: 52-54, 2017 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-29050878

RESUMO

We here characterized the stress-tolerant alfalfa microsymbiont Sinorhizobium meliloti B401. B401-treated plants showed high nitrogen fixation rates under humid and semiarid environments. The production of glycine betaine in isolated bacteroids positively correlated with low precipitation levels, suggesting that this compound acts as a critical osmoprotectant under field conditions. Genome analysis revealed that strain B401 contains alternative pathways for the biosynthesis and uptake of glycine betaine and its precursors. Such genomic information will offer substantial insight into the environmental physiology of this biotechnologically valuable nitrogen-fixing bacterium.


Assuntos
Genoma Bacteriano/genética , Medicago sativa/microbiologia , Fixação de Nitrogênio/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiologia , Adaptação Fisiológica , Betaína/metabolismo , Secas , Genômica , Medicago sativa/fisiologia , Sinorhizobium meliloti/metabolismo , Simbiose
17.
PLoS One ; 8(3): e57993, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23483963

RESUMO

Research done in the last years strongly support the hypothesis that PIP aquaporin can form heterooligomeric assemblies, specially combining PIP2 monomers with PIP1 monomers. Nevertheless, the structural elements involved in the ruling of homo versus heterooligomeric organization are not completely elucidated. In this work we unveil some features of monomer-monomer interaction in Beta vulgaris PIP aquaporins. Our results show that while BvPIP2;2 is able to interact with BvPIP1;1, BvPIP2;1 shows no functional interaction. The lack of functional interaction between BvPIP2;1 and BvPIP1;1 was further corroborated by dose-response curves of water permeability due to aquaporin activity exposed to different acidic conditions. We also found that BvPIP2;1 is unable to translocate BvPIP1;1-ECFP from an intracellular position to the plasma membrane when co-expressed, as BvPIP2;2 does. Moreover we postulate that the first extracellular loop (loop A) of BvPIP2;1, could be relevant for the functional interaction with BvPIP1;1. Thus, we investigate BvPIP2;1 loop A at an atomic level by Molecular Dynamics Simulation (MDS) and by direct mutagenesis. We found that, within the tetramer, each loop A presents a dissimilar behavior. Besides, BvPIP2;1 loop A mutants restore functional interaction with BvPIP1;1. This work is a contribution to unravel how PIP2 and PIP1 interact to form functional heterooligomeric assemblies. We postulate that BvPIP2;1 loop A is relevant for the lack of functional interaction with BvPIP1;1 and that the monomer composition of PIP assemblies determines their functional properties.


Assuntos
Aquaporinas/química , Aquaporinas/metabolismo , Beta vulgaris/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Animais , Permeabilidade da Membrana Celular , Sequência Conservada , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Osmose , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA