Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(14): 7424-7437, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37394281

RESUMO

Gene families divergently evolve and become adapted as different genes with specific structures and functions in living organisms. We performed comprehensive structural and functional analyses of Zinc-finger homeodomain genes (ZF-HDs), including Mini zinc-finger genes (MIFs) and Zinc-finger with homeodomain genes (ZHDs), displaying competitive functions each other. Intensive annotation updates for 90 plant genomes verified that most MIFs (MIF-Is) exhibited distinct motif compositions from ZHDs, although some MIFs (MIF-Zs) contained ZHD-specific motifs. Phylogenetic analyses suggested that MIF-Zs and ZHDs originated from the same ancestral gene, whereas MIF-Is emerged from a distinct progenitor. We used a gene-editing system to identify a novel function of MIF-Is in rice: regulating the surface material patterns in anthers and pollen through transcriptional regulation by interacting ZHDs. Kingdom-wide investigations determined that (i) ancestral MIFs diverged into MIF-Is and MIF-Zs in the last universal common ancestor, (ii) integration of HD into the C-terminal of MIF-Zs created ZHDs after emergence of green plants and (iii) MIF-Is and ZHDs subsequently expanded independently into specific plant lineages, with additional formation of MIF-Zs from ZHDs. Our comprehensive analysis provides genomic evidence for multiphase evolution driving divergent selection of ZF-HDs.


Assuntos
Genes Homeobox , Oryza , Dedos de Zinco , Regulação da Expressão Gênica de Plantas , Genômica , Filogenia , Proteínas de Plantas/metabolismo , Zinco , Dedos de Zinco/genética , Oryza/genética
2.
Physiol Plant ; 176(3): e14354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769079

RESUMO

Female gametogenesis has been rarely studied due to gametophyte lethality and the unavailability of related genetic resources. In this study, we identified a rice ATP-binding cassette transporter, OsABCB24, whose null function displayed a significantly reduced seed setting rate by as much as 94%-100% compared with that of the wild type (WT). The reciprocal cross of WT and mutant plants demonstrated that the female reproductive organs in mutants were functionally impaired. Confocal microscopy observations revealed that, although megasporogenesis remained unaffected in CRISPR/Cas9 osabcb24 mutants, the formation of female gametophytes was interrupted. Additionally, the structure of the syncytial nucleus was impaired during the initial stages of endosperm formation. Histochemical analysis showed that OsABCB24 was preferentially expressed at the conjunction of receptacle and ovary, spanning from the functional megaspore stage to the two-nucleate embryo sac stage. Further, OsABCB24 was identified as an endoplasmic reticulum membrane-localized protein. Notably, the overexpression of OsABCB24 triggered a 1.5- to 2-fold increase in grain production compared to the WT. Our findings showed that OsABCB24 plays a key role in both female gametophyte development and the early development of seeds.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Regulação da Expressão Gênica de Plantas , Oryza , Óvulo Vegetal , Proteínas de Plantas , Sementes , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Mutação/genética , Plantas Geneticamente Modificadas
3.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38396886

RESUMO

Phosphate (Pi) starvation is a critical factor limiting crop growth, development, and productivity. Rice (Oryza sativa) R2R3-MYB transcription factors function in the transcriptional regulation of plant responses to various abiotic stresses and micronutrient deprivation, but little is known about their roles in Pi starvation signaling and Pi homeostasis. Here, we identified the R2R3-MYB transcription factor gene OsMYB58, which shares high sequence similarity with AtMYB58. OsMYB58 expression was induced more strongly by Pi starvation than by other micronutrient deficiencies. Overexpressing OsMYB58 in Arabidopsis thaliana and rice inhibited plant growth and development under Pi-deficient conditions. In addition, the overexpression of OsMYB58 in plants exposed to Pi deficiency strongly affected root development, including seminal root, lateral root, and root hair formation. Overexpressing OsMYB58 strongly decreased the expression of the rice microRNAs OsmiR399a and OsmiR399j. By contrast, overexpressing OsMYB58 strongly increased the expression of rice PHOSPHATE 2 (OsPHO2), whose expression is repressed by miR399 during Pi starvation signaling. OsMYB58 functions as a transcriptional repressor of the expression of its target genes, as determined by a transcriptional activity assay. These results demonstrate that OsMYB58 negatively regulates OsmiR399-dependent Pi starvation signaling by enhancing OsmiR399s expression.


Assuntos
Arabidopsis , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Plantas/metabolismo , Fosfatos/metabolismo , Homeostase , Arabidopsis/genética , Arabidopsis/metabolismo , Desenvolvimento Vegetal , Micronutrientes/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo
4.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38396893

RESUMO

Rice is an important cereal crop worldwide, the growth of which is affected by rice blast disease, caused by the fungal pathogen Magnaporthe oryzae. As climate change increases the diversity of pathogens, the disease resistance genes (R genes) in plants must be identified. The major blast-resistance genes have been identified in indica rice varieties; therefore, japonica rice varieties with R genes now need to be identified. Because leucine-rich repeat (LRR) domain proteins possess R-gene properties, we used bioinformatics analysis to identify the rice candidate LRR domain receptor-like proteins (OsLRR-RLPs). OsLRR-RLP2, which contains six LRR domains, showed differences in the DNA sequence, containing 43 single-nucleotide polymorphisms (SNPs) in indica and japonica subpopulations. The results of the M. oryzae inoculation analysis indicated that indica varieties with partial deletion of OsLRR-RLP2 showed susceptibility, whereas japonica varieties with intact OsLRR-RLP2 showed resistance. The oslrr-rlp2 mutant, generated using clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), showed increased pathogen susceptibility, whereas plants overexpressing this gene showed pathogen resistance. These results indicate that OsLRR-RLP2 confers resistance to rice, and OsLRR-RLP2 may be useful for breeding resistant cultivars.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Magnaporthe/fisiologia , Melhoramento Vegetal , Proteínas/metabolismo , Resistência à Doença/genética , Proteínas de Repetições Ricas em Leucina , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Plant J ; 112(1): 193-206, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35959609

RESUMO

Grass xylan, the major hemicellulose in both primary and secondary cell walls, is heavily decorated with α-1,3-linked arabinofuranosyl (Araf) residues that may be further substituted at O-2 with xylosyl (Xyl) or Araf residues. Although xylan 3-O-arabinosyltransferases (XATs) catalyzing 3-O-Araf addition onto xylan have been characterized, glycosyltransferases responsible for the transfer of 2-O-Xyl or 2-O-Araf onto 3-O-Araf residues of xylan to produce the Xyl-Araf and Araf-Araf disaccharide side chains remain to be identified. In this report, we showed that a rice GT61 member, named OsXAXT1 (xylan arabinosyl 2-O-xylosyltransferase 1) herein, was able to mediate the addition of Xyl-Araf disaccharide side chains onto xylan when heterologously co-expressed with OsXAT2 in the Arabidopsis gux1/2/3 (glucuronic acid substitution of xylan 1/2/3) triple mutant that lacks any glycosyl substitutions. Recombinant OsXAXT1 protein expressed in human embryonic kidney 293 cells exhibited a xylosyltransferase activity catalyzing the addition of Xyl from UDP-Xyl onto arabinosylated xylooligomers. Consistent with its function as a xylan arabinosyl 2-O-xylosyltransferase, CRISPR-Cas9-mediated mutations of the OsXAXT1 gene in transgenic rice plants resulted in a reduction in the level of Xyl-Araf disaccharide side chains in xylan. Furthermore, we revealed that XAXT1 close homologs from several other grass species, including switchgrass, maize, and Brachypodium, possessed the same functions as OsXAXT1, indicating functional conservation of XAXTs in grass species. Together, our findings establish that grass XAXTs are xylosyltransferases catalyzing Xyl transfer onto O-2 of Araf residues of xylan to form the Xyl-Araf disaccharide side chains, which furthers our understanding of genes involved in xylan biosynthesis.


Assuntos
Arabidopsis , Oryza , Arabidopsis/genética , Arabidopsis/metabolismo , Parede Celular/metabolismo , Dissacarídeos/análise , Dissacarídeos/metabolismo , Ácido Glucurônico/análise , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Glicosiltransferases/metabolismo , Humanos , Oryza/genética , Oryza/metabolismo , Pentosiltransferases , Plantas Geneticamente Modificadas/metabolismo , Difosfato de Uridina/metabolismo , Xilanos/metabolismo , UDP Xilose-Proteína Xilosiltransferase
6.
Plant J ; 110(6): 1619-1635, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388561

RESUMO

Increasing the vegetative growth period of crops can increase biomass and grain yield. In rice (Oryza sativa), the concentration of trans -zeatin, an active cytokinin, was high in the leaves during vegetative growth and decreased rapidly upon induction of florigen expression, suggesting that this hormone is involved in the regulation of the vegetative phase. To elucidate whether exogenous cytokinin application influences the length of the vegetative phase, we applied 6-benzylaminopurine (BAP) to rice plants at various developmental stages. Our treatment delayed flowering time by 8-9 days when compared with mock-treated rice plants, but only at the transition stage when the flowering signals were produced. Our observations also showed that flowering in the paddy field is delayed by thidiazuron, a stable chemical that mimics the effects of cytokinin. The transcript levels of florigen genes Heading date 3a (Hd3a) and Rice Flowering locus T1 (RFT1) were significantly reduced by the treatment, but the expression of Early heading date 1 (Ehd1), a gene found directly upstream of the florigen genes, was not altered. In maize (Zea mays), similarly, BAP treatment increased the vegetative phage by inhibiting the expression of ZCN8, an ortholog of Hd3a. We showed that cytokinin treatment induced the expression of two type-A response regulators (OsRR1 and OsRR2) which interacted with Ehd1, a type-B response regulator. We also observed that cytokinin did not affect flowering time in ehd1 knockout mutants. Our study indicates that cytokinin application increases the duration of the vegetative phase by delaying the expression of florigen genes in rice and maize by inhibiting Ehd1.


Assuntos
Oryza , Citocininas/metabolismo , Florígeno/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/metabolismo
7.
Plant Physiol ; 190(1): 562-575, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35736513

RESUMO

Pollen tube (PT) elongation is important for double fertilization in angiosperms and affects the seed-setting rate and, therefore, crop productivity. Compared to Arabidopsis (Arabidopsis thaliana L.), information on PT elongation in rice (Oryza sativa L.) is limited by the difficulty in obtaining homozygous mutants. In a screen of T-DNA insertional mutants, we identified a mutant in the Tethering protein of actomyosin transport in pollen tube elongation (TAPE) gene with an unusual segregation ratio by genotyping analysis. A CRISPR/Cas9 knockout mutant of TAPE that produced a short PT was sterile, and TAPE was expressed specifically in pollen grains. TAPE is a homolog of a myosin XI adaptor in Arabidopsis with three tetratricopeptide repeat and Phox and Bem1 protein domains. TAPE showed latrunculin B-sensitive, actin-dependent localization to the endoplasmic reticulum. Yeast two-hybrid screening and transcriptome analysis revealed that TAPE interacted with pollen-specific LIM protein 2b and elongation factor 1-alpha. Loss of TAPE affected transcription of 1,259 genes, especially genes related to cell organization, which were downregulated. In summary, TAPE encodes a myosin XI adaptor essential for rice PT elongation.


Assuntos
Arabidopsis , Oryza , Arabidopsis/genética , Miosinas/genética , Miosinas/metabolismo , Oryza/genética , Pólen/genética , Pólen/metabolismo , Tubo Polínico/genética , Tubo Polínico/metabolismo
8.
Physiol Plant ; 175(6): e14075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148225

RESUMO

Soil salinity has a negative effect on crop yield. Therefore, plants have evolved many strategies to overcome decreases in yield under saline conditions. Among these, E3-ubiquitin ligase regulates salt tolerance. We characterized Oryza sativa Really Interesting New Gene (RING) Finger C3HC4-type E3 ligase (OsRFPHC-4), which plays a positive role in improving salt tolerance. The expression of OsRFPHC-4 was downregulated by high NaCl concentrations and induced by abscisic acid (ABA) treatment. GFP-fused OsRFPHC-4 was localized to the plasma membrane of rice protoplasts. OsRFPHC-4 encodes a cellular protein with a C3HC4-RING domain with E3 ligase activity. However, its variant OsRFPHC-4C161A does not possess this activity. OsRFPHC-4-overexpressing plants showed enhanced salt tolerance due to low accumulation of Na+ in both roots and leaves, low Na+ transport in the xylem sap, high accumulation of proline and soluble sugars, high activity of reactive oxygen species (ROS) scavenging enzymes, and differential regulation of Na+ /K+ transporter expression compared to wild-type (WT) and osrfphc-4 plants. In addition, OsRFPHC-4-overexpressing plants showed higher ABA sensitivity under exogenous ABA treatment than WT and osrfphc-4 plants. Overall, these results suggest that OsRFPHC-4 contributes to the improvement of salt tolerance and Na+ /K+ homeostasis via the regulation of changes in Na+ /K+ transporters.


Assuntos
Oryza , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Tolerância ao Sal/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Homeostase , Ubiquitinas/genética , Ubiquitinas/metabolismo , Ubiquitinas/farmacologia , Regulação da Expressão Gênica de Plantas , Salinidade
9.
Nucleic Acids Res ; 49(20): 11765-11777, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34725701

RESUMO

Transposable element (TE)-derived genes are increasingly recognized as major sources conferring essential traits in agriculturally important crops but underlying evolutionary mechanisms remain obscure. We updated previous annotations and constructed 18,744 FAR-RED IMPAIRED RESPONSE1 (FAR1) genes, a transcription factor family derived from Mutator-like elements (MULEs), from 80 plant species, including 15,546 genes omitted in previous annotations. In-depth sequence comparison of the updated gene repertoire revealed that FAR1 genes underwent continuous structural divergence via frameshift and nonsense mutations that caused premature translation termination or specific domain truncations. CRISPR/Cas9-based genome editing and transcriptome analysis determined a novel gene involved in fertility-regulating transcription of rice pollen, denoting the functional capacity of our re-annotated gene models especially in monocots which had the highest copy numbers. Genomic evidence showed that the functional gene adapted by obtaining a shortened form through a frameshift mutation caused by a tandem duplication of a 79-bp sequence resulting in premature translation termination. Our findings provide improved resources for comprehensive studies of FAR1 genes with beneficial agricultural traits and unveil novel evolutionary mechanisms generating structural divergence and subsequent adaptation of TE-derived genes in plants.


Assuntos
Especiação Genética , Taxa de Mutação , Proteínas de Plantas/genética , Elementos de DNA Transponíveis/genética , Mutação da Fase de Leitura , Duplicação Gênica , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Homologia de Sequência , Transcriptoma
10.
J Integr Plant Biol ; 65(9): 2218-2236, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37195059

RESUMO

Pollen tube growth is essential for successful double fertilization, which is critical for grain yield in crop plants. Rapid alkalinization factors (RALFs) function as ligands for signal transduction during fertilization. However, functional studies on RALF in monocot plants are lacking. Herein, we functionally characterized two pollen-specific RALFs in rice (Oryza sativa) using multiple clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9-induced loss-of-function mutants, peptide treatment, expression analyses, and tag reporter lines. Among the 41 RALF members in rice, OsRALF17 was specifically expressed at the highest level in pollen and pollen tubes. Exogenously applied OsRALF17 or OsRALF19 peptide inhibited pollen tube germination and elongation at high concentrations but enhanced tube elongation at low concentrations, indicating growth regulation. Double mutants of OsRALF17 and OsRALF19 (ralf17/19) exhibited almost full male sterility with defects in pollen hydration, germination, and tube elongation, which was partially recovered by exogenous treatment with OsRALF17 peptide. This study revealed that two partially functionally redundant OsRALF17 and OsRALF19 bind to Oryza sativa male-gene transfer defective 2 (OsMTD2) and transmit reactive oxygen species signals for pollen tube germination and integrity maintenance in rice. Transcriptomic analysis confirmed their common downstream genes, in osmtd2 and ralf17/19. This study provides new insights into the role of RALF, expanding our knowledge of the biological role of RALF in regulating rice fertilization.


Assuntos
Oryza , Tubo Polínico , Tubo Polínico/genética , Pólen/genética , Transdução de Sinais , Peptídeos
11.
Plant J ; 107(4): 1131-1147, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34143922

RESUMO

The highly specialized haploid male gametophyte-pollen consist of two sperm cells and a large vegetative cell. Successful fertilization requires proper growth timing and rupture of the pollen tube until it delivers sperm cells, which occur immediately after a pollen grain hydrates. Although a tight regulation on polar cell-wall expansion of the pollen tube is fundamentally important, the underlying molecular mechanism remains largely unknown, especially in crop plants. Here, we characterized the function of male-gene transfer defective 2 (OsMTD2) gene in rice (Oryza sativa), which belongs to the plant-specific receptor-like kinase, the CrRLK1L family. We demonstrated that OsMTD2 is an essential male factor participating in pollen-tube elongation based on genetic evidence and physiological observations. Because of unavailability of homozygous mutant via conventional methods, we used CRISPR-Cas9 system to obtain homozygous knockout mutant of OsMTD2. We were able to identify phenotypic changes including male sterility due to early pollen-tube rupture in the mutant. We observed that the production of reactive oxygen species (ROS) was dramatically reduced in mutants of OsMTD2 pollen grain and tubes with defective pectin distribution. Transcriptome analysis of osmtd2-2 versus wild-type anthers revealed that genes involved in defense responses, metabolic alteration, transcriptional and protein modification were highly upregulated in the osmtd2-2 mutant. Through yeast-two-hybrid screening, we found that OsMTD2 kinase interacts with E3 ligase SPL11. Taken together, we propose that OsMTD2 has crucial functions in promoting pollen-tube elongation through cell-wall modification, possibly by modulating ROS homeostasis during pollen-tube growth.


Assuntos
Oryza/fisiologia , Proteínas de Plantas/metabolismo , Tubo Polínico/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/genética , Processamento de Proteína Pós-Traducional , Técnicas do Sistema de Duplo-Híbrido
12.
Plant J ; 105(6): 1645-1664, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33345419

RESUMO

Successful delivery of sperm cells to the embryo sac in higher plants is mediated by pollen tube growth. The molecular mechanisms underlying pollen germination and tube growth in crop plants remain rather unclear, although these mechanisms are crucial to plant reproduction and seed formation. By screening pollen-specific gene mutants in rice (Oryza sativa), we identified a T-DNA insertional mutant of Germinating modulator of rice pollen (GORI) that showed a one-to-one segregation ratio for wild type (WT) to heterozygous. GORI encodes a seven-WD40-motif protein that is homologous to JINGUBANG/REN4 in Arabidopsis. GORI is specifically expressed in rice pollen, and its protein is localized in the nucleus, cytosol and plasma membrane. Furthermore, a homozygous mutant, gori-2, created through CRISPR-Cas9 clearly exhibited male sterility with disruption of pollen tube germination and elongation. The germinated pollen tube of gori-2 exhibited decreased actin filaments and altered pectin distribution. Transcriptome analysis revealed that 852 pollen-specific genes were downregulated in gori-2 compared with the WT, and Gene Ontology enrichment analysis indicated that these genes are strongly associated with cell wall modification and clathrin coat assembly. Based on the molecular features of GORI, phenotypical observation of the gori mutant and its interaction with endocytic proteins and Rac GTPase, we propose that GORI plays key roles in forming endo-/exocytosis complexes that could mediate pollen tube growth in rice.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Tubo Polínico/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Germinação/fisiologia , Oryza/genética , Proteínas de Plantas/genética , Tubo Polínico/genética , RNA-Seq
13.
Plant Cell Rep ; 41(5): 1229-1242, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35249124

RESUMO

To further understand the regulatory mechanism for anther dehiscence in rice, we carried out transcriptome analysis for the following two tissues: the anther wall and pollen at the anthesis stage. With the anatomical meta-expression data, in addition to these tissues, the differentially expressed genes (DEGs) between the two tissues were further refined to identify 1,717 pollen-preferred genes and 534 anther wall-preferred genes. A GUS transgenic line and RT-qPCR analysis for anther wall-preferred genes supported the fidelity of our gene candidates for further analysis. The refined DEGs were functionally classified through Gene Ontology (GO) enrichment and MapMan analyses. Through the analysis of cis-acting elements and alternative splicing variants, we also suggest the feature of regulatory sequences in promoter regions for anther wall-preferred expression and provide information of the unique splicing variants in anther wall. Subsequently, it was found that hormone signaling and the resulting transcriptional regulation pathways may play an important role in anther dehiscence and anther wall development. Our results could provide useful insights into future research to broaden the molecular mechanism of anther dehiscence or anther wall development in rice.


Assuntos
Oryza , Flores , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/metabolismo
14.
Plant J ; 104(2): 532-545, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32652789

RESUMO

Rice (Oryza sativa L.) is a staple crop with agricultural traits that have been intensively investigated. However, despite the variety of mutant population and multi-omics data that have been generated, rice functional genomic research has been bottlenecked due to the functional redundancy in the genome. This phenomenon has masked the phenotypes of knockout mutants by functional compensation and redundancy. Here, we present an intuitive tool, CRISPR applicable functional redundancy inspector to accelerate functional genomics in rice (CAFRI-Rice; cafri-rice.khu.ac.kr). To create this tool, we generated a phylogenetic heatmap that can estimate the similarity between protein sequences and expression patterns, based on 2,617 phylogenetic trees and eight tissue RNA-sequencing datasets. In this study, 33,483 genes were sorted into 2,617 families, and about 24,980 genes were tested for functional redundancy using a phylogenetic heatmap approach. It was predicted that 7,075 genes would have functional redundancy, according to the threshold value validated by an analysis of 111 known genes functionally characterized using knockout mutants and 5,170 duplicated genes. In addition, our analysis demonstrated that an anther/pollen-preferred gene cluster has more functional redundancy than other clusters. Finally, we showed the usefulness of the CAFRI-Rice-based approach by overcoming the functional redundancy between two root-preferred genes via loss-of-function analyses as well as confirming the functional dominancy of three genes through a literature search. This CAFRI-Rice-based target selection for CRISPR/Cas9-mediated mutagenesis will not only accelerate functional genomic studies in rice but can also be straightforwardly expanded to other plant species.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Genômica/métodos , Oryza/genética , Proteínas de Plantas/genética , Software , Visualização de Dados , Duplicação Gênica , Genoma de Planta , Família Multigênica , Mutagênese , Oryza/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polinização
15.
Plant Biotechnol J ; 19(11): 2177-2191, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34058048

RESUMO

Cereal grain endosperms are an important source of human nutrition. Nuclear division in early endosperm development plays a major role in determining seed size; however, this development is not well understood. We identified the rice mutant endospermless 2 (enl2), which shows defects in the early stages of endosperm development. These phenotypes arise from mutations in OsCTPS1 that encodes a cytidine triphosphate synthase (CTPS). Both wild-type and mutant endosperms were normal at 8 h after pollination (HAP). In contrast, at 24 HAP, enl2 endosperm had approximately 10-16 clumped nuclei while wild-type nuclei had increased in number and migrated to the endosperm periphery. Staining of microtubules in endosperm at 24 HAP revealed that wild-type nuclei were evenly distributed by microtubules while the enl2-2 nuclei were tightly packed due to their reduction in microtubule association. In addition, OsCTPS1 interacts with tubulins; thus, these observations suggest that OsCTPS1 may be involved in microtubule formation. OsCTPS1 transiently formed macromolecular structures in the endosperm during early developmental stages, further supporting the idea that OsCTPS1 may function as a structural component during endosperm development. Finally, overexpression of OsCTPS1 increased seed weight by promoting endosperm nuclear division, suggesting that this trait could be used to increase grain yield.


Assuntos
Endosperma , Oryza , Carbono-Nitrogênio Ligases , Núcleo Celular , Endosperma/genética , Oryza/genética , Sementes/genética
16.
Plant Physiol ; 182(2): 962-976, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31772077

RESUMO

The timely programmed cell death (PCD) of the tapetum, the innermost somatic anther cell layer in flowering plants, is critical for pollen development, including the deposition and patterning of the pollen wall. Although several genes involved in tapetal PCD and pollen wall development have been characterized, the underlying regulatory mechanism remains elusive. Here we report that PERSISTENT TAPETAL CELL2 (PTC2), which encodes an AT-hook nuclear localized protein in rice (Oryza sativa), is required for normal tapetal PCD and pollen wall development. The mutant ptc2 showed persistent tapetal cells and abnormal pollen wall patterning including absent nexine, collapsed bacula, and disordered tectum. The defective tapetal PCD phenotype of ptc2 was similar to that of a PCD delayed mutant, ptc1, in rice, while the abnormal pollen wall patterning resembled that of a pollen wall defective mutant, Transposable Element Silencing Via AT-Hook, in Arabidopsis (Arabidopsis thaliana). Levels of anther cutin monomers in ptc2 anthers were significantly reduced, as was expression of a series of lipid biosynthetic genes. PTC2 transcript and protein were shown to be present in the anther after meiosis, consistent with the observed phenotype. Based on these data, we propose a model explaining how PTC2 affects anther and pollen development. The characterization of PTC2 in tapetal PCD and pollen wall patterning expands our understanding of the regulatory network of male reproductive development in rice and will aid future breeding approaches.


Assuntos
Apoptose/genética , Flores/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Oryza/genética , Infertilidade das Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Motivos AT-Hook/genética , Arabidopsis/genética , Núcleo Celular/metabolismo , Fragmentação do DNA , Flores/genética , Flores/metabolismo , Flores/ultraestrutura , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes , Genótipo , Metabolismo dos Lipídeos/genética , Lipídeos/análise , Microscopia Eletrônica de Varredura , Mutação , Oryza/metabolismo , Fenótipo , Proteínas de Plantas/genética , Pólen/genética , Pólen/metabolismo , Pólen/ultraestrutura , RNA-Seq , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
Int J Mol Sci ; 23(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35008665

RESUMO

The MADS (MCM1-AGAMOUS-DEFFICIENS-SRF) gene family has a preserved domain called MADS-box that regulates downstream gene expression as a transcriptional factor. Reports have revealed three MADS genes in rice, OsMADS62, OsMADS63, and OsMADS68, which exhibits preferential expression in mature rice pollen grains. To better understand the transcriptional regulation of pollen germination and tube growth in rice, we generated the loss-of-function homozygous mutant of these three OsMADS genes using the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9) system in wild-type backgrounds. Results showed that the triple knockout (KO) mutant showed a complete sterile phenotype without pollen germination. Next, to determine downstream candidate genes that are transcriptionally regulated by the three OsMADS genes during pollen development, we proceeded with RNA-seq analysis by sampling the mature anther of the mutant and wild-type. Two hundred and seventy-four upregulated and 658 downregulated genes with preferential expressions in the anthers were selected. Furthermore, downregulated genes possessed cell wall modification, clathrin coat assembly, and cellular cell wall organization features. We also selected downregulated genes predicted to be directly regulated by three OsMADS genes through the analyses for promoter sequences. Thus, this study provides a molecular background for understanding pollen germination and tube growth mediated by OsMADS62, OsMADS63, and OsMADS68 with mature pollen preferred expression.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação/genética , Mutação/genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Proteínas de Plantas/genética , Pólen/crescimento & desenvolvimento , Parede Celular/metabolismo , Regulação para Baixo/genética , Genes de Plantas , Modelos Biológicos , Anotação de Sequência Molecular , Fenótipo , Infertilidade das Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Regiões Promotoras Genéticas/genética , Amido/metabolismo
18.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806722

RESUMO

Auxins play an essential role in regulating plant growth and adaptation to abiotic stresses, such as nutrient stress. Our current understanding of auxins is based almost entirely on the results of research on the eudicot Arabidopsis thaliana, however, the role of the rice PIN-FORMED (PIN) auxin efflux carriers in the regulation of the ammonium-dependent response remains elusive. Here, we analyzed the expression patterns in various organs/tissues and the ammonium-dependent response of rice PIN-family genes (OsPIN genes) via qRT-PCR, and attempted to elucidate the relationship between nitrogen (N) utilization and auxin transporters. To investigate auxin distribution under ammonium-dependent response after N deficiency in rice roots, we used DR5::VENUS reporter lines that retained a highly active synthetic auxin response. Subsequently, we confirmed that ammonium supplementation reduced the DR5::VENUS signal compared with that observed in the N-deficient condition. These results are consistent with the decreased expression patterns of almost all OsPIN genes in the presence of the ammonium-dependent response to N deficiency. Furthermore, the ospin1b mutant showed an insensitive phenotype in the ammonium-dependent response to N deficiency and disturbances in the regulation of several N-assimilation genes. These molecular and physiological findings suggest that auxin is involved in the ammonium assimilation process of rice, which is a model crop plant.


Assuntos
Ácidos Indolacéticos/metabolismo , Oryza/fisiologia , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Compostos de Amônio/metabolismo , Transporte Biológico , Fertilizantes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Família Multigênica , Mutação , Nitrogênio/metabolismo , Especificidade de Órgãos , Desenvolvimento Vegetal/genética , Raízes de Plantas/crescimento & desenvolvimento , Característica Quantitativa Herdável , Plântula/genética , Plântula/crescimento & desenvolvimento
19.
Int J Mol Sci ; 22(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401385

RESUMO

Clade A Type 2C protein phosphatases (PP2CAs) negatively regulate abscisic acid (ABA) signaling and have diverse functions in plant development and in response to various stresses. In this study, we showed that overexpression of the rice ABA receptor OsPYL/RCAR3 reduces the growth retardation observed in plants exposed to osmotic stress. By contrast, overexpression of the OsPYL/RCAR3-interacting protein OsPP2C09 rendered plant growth more sensitive to osmotic stress. We tested whether OsPP2CAs activate an ABA-independent signaling cascade by transfecting rice protoplasts with luciferase reporters containing the drought-responsive element (DRE) or ABA-responsive element (ABRE). We observed that OsPP2CAs activated gene expression via the cis-acting drought-responsive element. In agreement with this observation, transcriptome analysis of plants overexpressing OsPP2C09 indicated that OsPP2C09 induces the expression of genes whose promoters contain DREs. Further analysis showed that OsPP2C09 interacts with DRE-binding (DREB) transcription factors and activates reporters containing DRE. We conclude that, through activating DRE-containing promoters, OsPP2C09 positively regulates the drought response regulon and activates an ABA-independent signaling pathway.


Assuntos
Oryza/enzimologia , Proteína Fosfatase 2C/metabolismo , Transdução de Sinais , Estresse Fisiológico , Ácido Abscísico/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/fisiologia , Pressão Osmótica , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Proteína Fosfatase 2C/fisiologia
20.
BMC Plant Biol ; 20(1): 95, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131749

RESUMO

BACKGROUND: In plants, the key roles played by RopGEF-mediated ROP signaling in diverse processes, including polar tip growth, have been identified. Despite their important roles in reproduction, a comprehensive analysis of RopGEF members has not yet been performed in rice (Oryza sativa). To determine whether RopGEF regulators are involved in rice pollen tube growth, we performed genome-wide analysis of this family in rice. RESULTS: Phylogenomic and meta-expression analysis of eleven RopGEFs in rice showed that four genes were preferentially expressed in mature pollen. These four genes contain the plant-specific Rop nucleotide exchanger (PRONE) domain and possible phosphorylated residues, suggesting a conserved role in polar tip growth with Arabidopsis thaliana. In subcellular localization analysis of the four RopGEFs through tobacco (Nicotiana benthamiana) infiltration, four proteins were predominantly identified in plasma membrane. Moreover, double mutants of RopGEF2/8 exhibited reduced pollen germination, causing partial male sterility. These genes possess unique cis-acting elements in their promoters compared with the other RopGEF genes. CONCLUSIONS: In this study, four RopGEF genes were identified as pollen-specific gene in eleven members of rice, and the expression pattern, promoter analysis, and evolutionary relationship of the RopGEF family were studied compared with Arabidopsis. Our study indicated that four RopGEF genes might function during pollen germination in distinct subcellular localization. Our study could provide valuable information on the functional study of RopGEF in rice.


Assuntos
Genes de Plantas/genética , Família Multigênica/genética , Oryza/genética , Proteínas de Plantas/genética , Tubo Polínico/crescimento & desenvolvimento , Estudo de Associação Genômica Ampla , Proteínas de Plantas/metabolismo , Tubo Polínico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA