Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 279(1726): 153-62, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21613297

RESUMO

The major histocompatibility complex (MHC) is a polymorphic gene family associated with immune defence, and it can play a role in mate choice. Under the genetic compatibility hypothesis, females choose mates that differ genetically from their own MHC genotypes, avoiding inbreeding and/or enhancing the immunocompetence of their offspring. We tested this hypothesis of disassortative mating based on MHC genotypes in a population of great frigatebirds (Fregata minor) by sequencing the second exon of MHC class II B. Extensive haploid cloning yielded two to four alleles per individual, suggesting the amplification of two genes. MHC similarity between mates was not significantly different between pairs that did (n = 4) or did not (n = 42) exhibit extra-pair paternity. Comparing all 46 mated pairs to a distribution based on randomized re-pairings, we observed the following (i): no evidence for mate choice based on maximal or intermediate levels of MHC allele sharing (ii), significantly disassortative mating based on similarity of MHC amino acid sequences, and (iii) no evidence for mate choice based on microsatellite alleles, as measured by either allele sharing or similarity in allele size. This suggests that females choose mates that differ genetically from themselves at MHC loci, but not as an inbreeding-avoidance mechanism.


Assuntos
Aves/fisiologia , Éxons , Genes MHC da Classe II/genética , Comportamento Sexual Animal , Animais , Aves/genética , Clonagem Molecular , Feminino , Genótipo , Havaí , Masculino , Repetições de Microssatélites , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Multiplex/veterinária
2.
Artigo em Inglês | MEDLINE | ID: mdl-18035568

RESUMO

Carotenoid pigments are a common source of red, orange, and yellow coloration in vertebrates. Animals cannot manufacture carotenoids and therefore must obtain them in their diet to produce carotenoid-based coloration. Male great frigatebirds (Fregata minor) display a bright red inflated gular pouch as part of their elaborate courtship display. The basis of this coloration until now has not been investigated. Using high-performance liquid chromatography (HPLC), we investigated the types and concentrations of carotenoids that great frigatebirds circulate in their plasma and whether male gular pouch coloration was carotenoid-based. Great frigatebird plasma collected during the breeding season contained three carotenoid pigments in dilute concentrations-tunaxanthin, zeaxanthin, and astaxanthin-with astaxanthin accounting for nearly 85% of the carotenoids present. Astaxanthin was the only carotenoid present in gular pouch tissue, but the concentration is the highest reported for any carotenoid-pigmented avian tissue. Throat pouch reflectance curves were measured with a UV-VIS spectrophotometer, revealing a complex pattern of one UV peak (approx. 360 nm), two absorption valleys (approx. 542 and 577 nm), followed by a plateau at approx 630 nm. The reflectance curve suggests a role for additional pigments, in particular hemoglobin, in the production of color in this ornament.


Assuntos
Aves/fisiologia , Carotenoides/metabolismo , Carotenoides/fisiologia , Faringe/fisiologia , Pigmentação/fisiologia , Animais , Aves/sangue , Aves/metabolismo , Carotenoides/sangue , Carotenoides/química , Feminino , Masculino , Faringe/metabolismo , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia , Xantofilas/análise , Xantofilas/sangue , Zeaxantinas
3.
Artigo em Inglês | MEDLINE | ID: mdl-29335369

RESUMO

Telomeres are highly conserved regions of DNA that protect the ends of linear chromosomes. The loss of telomeres can signal an irreversible change to a cell's state, including cellular senescence. Senescent cells no longer divide and can damage nearby healthy cells, thus potentially placing them at the crossroads of cancer and ageing. While the epidemiology, cellular and molecular biology of telomeres are well studied, a newer field exploring telomere biology in the context of ecology and evolution is just emerging. With work to date focusing on how telomere shortening relates to individual mortality, less is known about how telomeres relate to ageing rates across species. Here, we investigated telomere length in cross-sectional samples from 19 bird species to determine how rates of telomere loss relate to interspecific variation in maximum lifespan. We found that bird species with longer lifespans lose fewer telomeric repeats each year compared with species with shorter lifespans. In addition, phylogenetic analysis revealed that the rate of telomere loss is evolutionarily conserved within bird families. This suggests that the physiological causes of telomere shortening, or the ability to maintain telomeres, are features that may be responsible for, or co-evolved with, different lifespans observed across species.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.


Assuntos
Envelhecimento/fisiologia , Aves/fisiologia , Longevidade/fisiologia , Encurtamento do Telômero/fisiologia , Telômero/fisiologia , Envelhecimento/genética , Animais , Variação Biológica da População , Aves/genética , Senescência Celular , Estudos Transversais , Feminino , Longevidade/genética , Masculino , Filogenia , Telômero/genética , Encurtamento do Telômero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA