Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Ecol ; 90(5): 1205-1216, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33608888

RESUMO

Studying how food web structure and function vary through time represents an opportunity to better comprehend and anticipate ecosystem changes. Yet, temporal studies of highly resolved food web structure are scarce. With few exceptions, most temporal food web studies are either too simplified, preventing a detailed assessment of structural properties or binary, missing the temporal dynamics of energy fluxes among species. Using long-term, multi-trophic biomass data coupled with highly resolved information on species feeding relationships, we analysed food web dynamics in the Gulf of Riga (Baltic Sea) over more than three decades (1981-2014). We combined unweighted (topology-based) and weighted (biomass- and flux-based) food web approaches, first, to unravel how distinct descriptors can highlight differences (or similarities) in food web dynamics through time, and second, to compare temporal dynamics of food web structure and function. We find that food web descriptors vary substantially and distinctively through time, likely reflecting different underlying ecosystem processes. While node- and link-weighted metrics reflect changes related to alterations in species dominance and fluxes, unweighted metrics are more sensitive to changes in species and link richness. Comparing unweighted, topology-based metrics and flux-based functions further indicates that temporal changes in functions cannot be predicted using unweighted food web structure. Rather, information on species population dynamics and weighted, flux-based networks should be included to better comprehend temporal food web dynamics. By integrating unweighted, node- and link-weighted metrics, we here demonstrate how different approaches can be used to compare food web structure and function, and identify complementary patterns of change in temporal food web dynamics, which enables a more complete understanding of the ecological processes at play in ecosystems undergoing change.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Biomassa , Dinâmica Populacional
2.
FEMS Microbiol Ecol ; 98(12)2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36354101

RESUMO

The semi-enclosed Baltic Sea experiences regular summer blooms of diazotrophic cyanobacteria. Previously, it has been conclusively demonstrated that in open nitrogen-limited parts of the Baltic Sea, cyanobacteria successfully fix atmospheric N2. At the same time, diazotrophic activity is still poorly understood in Baltic Sea sub-regions where nitrogen and phosphorus are co-limiting primary production. To address this gap in research, we used the15 N tracer method for in situ incubations and measured the N2-fixation rate of heterocyst-forming cyanobacteria and picocyanobacteria in the Gulf of Riga, Baltic Sea, from April to September. Physicochemical variables and phytoplankton community composition were also determined. Our results show that the dominant species of cyanobacteria for this region (Aphanizomenon flosaquae) was present in the phytoplankton community during most of the study period. We also establish that the N2-fixation rate has a strong correlation with the proportion of A. flosaquae biomass containing heterocysts (r = 0.80). Our findings highlight the importance of a heterocyst-focused approach for an accurate diazotrophic activity evaluation that is one of the foundations for future management and protection of the Baltic Sea.


Assuntos
Cianobactérias , Fixação de Nitrogênio , Estações do Ano , Nitrogênio/análise , Países Bálticos
3.
PLoS One ; 8(4): e61293, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637807

RESUMO

A common and established view is that increased inputs of nutrients to the sea, for example via river flooding, will cause eutrophication and phytoplankton blooms in coastal areas. We here show that this concept may be questioned in certain scenarios. Climate change has been predicted to cause increased inflow of freshwater to coastal areas in northern Europe. River waters in these areas are often brown from the presence of high concentrations of allochthonous dissolved organic carbon (humic carbon), in addition to nitrogen and phosphorus. In this study we investigated whether increased inputs of humic carbon can change the structure and production of the pelagic food web in the recipient seawater. In a mesocosm experiment unfiltered seawater from the northern Baltic Sea was fertilized with inorganic nutrients and humic carbon (CNP), and only with inorganic nutrients (NP). The system responded differently to the humic carbon addition. In NP treatments bacterial, phytoplankton and zooplankton production increased and the systems turned net autotrophic, whereas the CNP-treatment only bacterial and zooplankton production increased driving the system to net heterotrophy. The size-structure of the food web showed large variations in the different treatments. In the enriched NP treatments the phytoplankton community was dominated by filamentous >20 µm algae, while in the CNP treatments the phytoplankton was dominated by picocyanobacteria <5 µm. Our results suggest that climate change scenarios, resulting in increased humic-rich river inflow, may counteract eutrophication in coastal waters, leading to a promotion of the microbial food web and other heterotrophic organisms, driving the recipient coastal waters to net-heterotrophy.


Assuntos
Eutrofização/fisiologia , Água Doce/microbiologia , Substâncias Húmicas , Água do Mar/microbiologia , Animais , Mudança Climática , Cadeia Alimentar , Processos Heterotróficos , Fitoplâncton , Rios
4.
Mar Pollut Bull ; 60(10): 1691-700, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20655073

RESUMO

There is an increasing understanding and requirement to take into account the effects of invasive alien species (IAS) in environmental quality assessments. While IAS are listed amongst the most important factors threatening marine biodiversity, information on their impacts remains unquantified, especially for phytoplankton species. This study attempts to assess the impacts of invasive alien phytoplankton in the Baltic Sea during 1980-2008. A bioinvasion impact assessment method (BPL - biopollution level index) was applied to phytoplankton monitoring data collected from eleven sub-regions of the Baltic Sea. BPL takes into account abundance and distribution range of an alien species and the magnitude of the impact on native communities, habitats and ecosystem functioning. Of the 12 alien/cryptogenic phytoplankton species recorded in the Baltic Sea only one (the dinoflagellate Prorocentrum minimum) was categorized as an IAS, causing a recognizable environmental effect.


Assuntos
Meio Ambiente , Monitoramento Ambiental/métodos , Espécies Introduzidas , Fitoplâncton/fisiologia , Países Bálticos , Ecossistema , Oceanos e Mares , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA