Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 17(11): e1009890, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34723970

RESUMO

In contrast to mammals, the zebrafish maintains its cardiomyocyte proliferation capacity throughout adulthood. However, neither the molecular mechanisms that orchestrate the proliferation of cardiomyocytes during developmental heart growth nor in the context of regeneration in the adult are sufficiently defined yet. We identified in a forward genetic N-ethyl-N-nitrosourea (ENU) mutagenesis screen the recessive, embryonic-lethal zebrafish mutant baldrian (bal), which shows severely impaired developmental heart growth due to diminished cardiomyocyte proliferation. By positional cloning, we identified a missense mutation in the zebrafish histone deacetylase 1 (hdac1) gene leading to severe protein instability and the loss of Hdac1 function in vivo. Hdac1 inhibition significantly reduces cardiomyocyte proliferation, indicating a role of Hdac1 during developmental heart growth in zebrafish. To evaluate whether developmental and regenerative Hdac1-associated mechanisms of cardiomyocyte proliferation are conserved, we analyzed regenerative cardiomyocyte proliferation after Hdac1 inhibition at the wound border zone in cryoinjured adult zebrafish hearts and we found that Hdac1 is also essential to orchestrate regenerative cardiomyocyte proliferation in the adult vertebrate heart. In summary, our findings suggest an important and conserved role of Histone deacetylase 1 (Hdac1) in developmental and adult regenerative cardiomyocyte proliferation in the vertebrate heart.


Assuntos
Coração/fisiologia , Histona Desacetilase 1/metabolismo , Miócitos Cardíacos/citologia , Regeneração/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Proliferação de Células
2.
Biochem Biophys Res Commun ; 665: 98-106, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37149988

RESUMO

Zebrafish have the ability to fully regenerate their hearts after injury since cardiomyocytes subsequently dedifferentiate, re-enter cell cycle, and proliferate to replace damaged myocardial tissue. Recent research identified the reactivation of dormant developmental pathways during cardiac regeneration in adult zebrafish, suggesting pro-proliferative pathways important for developmental heart growth to be also critical for regenerative heart growth after injury. Histone deacetylase 1 (Hdac1) was recently shown to control both, embryonic as well as adult regenerative cardiomyocyte proliferation in the zebrafish model. Nevertheless, regulatory pathways controlled by Hdac1 are not defined yet. By analyzing RNA-seq-derived transcriptional profiles of the Hdac1-deficient zebrafish mutant baldrian, we here identified DNA damage response (DDR) pathways activated in baldrian mutant embryos. Surprisingly, although the DDR signaling pathway was transcriptionally activated, we found the complete loss of protein expression of the known DDR effector and cell cycle inhibitor p21. Consequently, we observed an upregulation of the p21-downstream target Cdk2, implying elevated G1/S phase transition in Hdac1-deficient zebrafish hearts. Remarkably, Cdk1, another p21-but also Cdc25-downstream target was downregulated. Here, we found the significant downregulation of Cdc25 protein expression, explaining reduced Cdk1 levels and suggesting impaired G2/M phase progression in Hdac1-deficient zebrafish embryos. To finally prove defective cell cycle progression due to Hdac1 loss, we conducted Cytometer-based cell cycle analyses in HDAC1-deficient murine HL-1 cardiomyocytes and indeed found impaired G2/M phase transition resulting in defective cardiomyocyte proliferation. In conclusion, our results suggest a critical role of Hdac1 in maintaining both, regular G1/S and G2/M phase transition in cardiomyocytes by controlling the expression of essential cell cycle regulators such as p21 and Cdc25.


Assuntos
Miócitos Cardíacos , Peixe-Zebra , Animais , Camundongos , Ciclo Celular/genética , Divisão Celular , Proliferação de Células , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Miócitos Cardíacos/metabolismo , Peixe-Zebra/metabolismo , Fosfatases cdc25/metabolismo , Proteína Quinase CDC2/metabolismo
3.
J Transl Med ; 21(1): 566, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620858

RESUMO

BACKGROUND: Long-chain acyl-carnitines (ACs) are potential arrhythmogenic metabolites. Their role in atrial fibrillation (AF) remains incompletely understood. Using a systems medicine approach, we assessed the contribution of C18:1AC to AF by analysing its in vitro effects on cardiac electrophysiology and metabolism, and translated our findings into the human setting. METHODS AND RESULTS: Human iPSC-derived engineered heart tissue was exposed to C18:1AC. A biphasic effect on contractile force was observed: short exposure enhanced contractile force, but elicited spontaneous contractions and impaired Ca2+ handling. Continuous exposure provoked an impairment of contractile force. In human atrial mitochondria from AF individuals, C18:1AC inhibited respiration. In a population-based cohort as well as a cohort of patients, high C18:1AC serum concentrations were associated with the incidence and prevalence of AF. CONCLUSION: Our data provide evidence for an arrhythmogenic potential of the metabolite C18:1AC. The metabolite interferes with mitochondrial metabolism, thereby contributing to contractile dysfunction and shows predictive potential as novel circulating biomarker for risk of AF.


Assuntos
Fibrilação Atrial , Humanos , Átrios do Coração , Mitocôndrias , Contração Muscular , Respiração
4.
PLoS Genet ; 16(11): e1009088, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137814

RESUMO

Mutations in the molecular co-chaperone Bcl2-associated athanogene 3 (BAG3) are found to cause dilated cardiomyopathy (DCM), resulting in systolic dysfunction and heart failure, as well as myofibrillar myopathy (MFM), which is characterized by protein aggregation and myofibrillar disintegration in skeletal muscle cells. Here, we generated a CRISPR/Cas9-induced Bag3 knockout zebrafish line and found the complete preservation of heart and skeletal muscle structure and function during embryonic development, in contrast to morpholino-mediated knockdown of Bag3. Intriguingly, genetic compensation, a process of transcriptional adaptation which acts independent of protein feedback loops, was found to prevent heart and skeletal muscle damage in our Bag3 knockout model. Proteomic profiling and quantitative real-time PCR analyses identified Bag2, another member of the Bag protein family, significantly upregulated on a transcript and protein level in bag3-/- mutants. This implied that the decay of bag3 mutant mRNA in homozygous bag3-/- embryos caused the transcriptional upregulation of bag2 expression. We further demonstrated that morpholino-mediated knockdown of Bag2 in bag3-/- embryos evoked severe functional and structural heart and skeletal muscle defects, which are similar to Bag3 morphants. However, Bag2 knockdown in bag3+/+ or bag3+/- embryos did not result in (cardio-)myopathy. Finally, we found that inhibition of the nonsense-mediated mRNA decay (NMD) machinery by knockdown of upf1, an essential NMD factor, caused severe heart and skeletal muscle defects in bag3-/- mutants due to the blockade of transcriptional adaptation of bag2 expression. Our findings provide evidence that genetic compensation might vitally influence the penetrance of disease-causing bag3 mutations in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Cardiomiopatias/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Modelos Animais de Doenças , Insuficiência Cardíaca/patologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mutação , Miocárdio/metabolismo , Miopatias Congênitas Estruturais/metabolismo , Fenótipo , Proteômica , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
5.
Nucleic Acids Res ; 48(7): 3496-3512, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32107550

RESUMO

Aberrant Notch signaling plays a pivotal role in T-cell acute lymphoblastic leukemia (T-ALL) and chronic lymphocytic leukemia (CLL). Amplitude and duration of the Notch response is controlled by ubiquitin-dependent proteasomal degradation of the Notch1 intracellular domain (NICD1), a hallmark of the leukemogenic process. Here, we show that HDAC3 controls NICD1 acetylation levels directly affecting NICD1 protein stability. Either genetic loss-of-function of HDAC3 or nanomolar concentrations of HDAC inhibitor apicidin lead to downregulation of Notch target genes accompanied by a local reduction of histone acetylation. Importantly, an HDAC3-insensitive NICD1 mutant is more stable but biologically less active. Collectively, these data show a new HDAC3- and acetylation-dependent mechanism that may be exploited to treat Notch1-dependent leukemias.


Assuntos
Histona Desacetilases/metabolismo , Leucemia/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Humanos , Leucemia/enzimologia , Lisina/metabolismo , Camundongos , Mutação , Peptídeos Cíclicos/farmacologia , Estabilidade Proteica , Receptor Notch1/química , Receptor Notch1/genética
6.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743185

RESUMO

Valosin-containing protein (VCP) acts as a key regulator of cellular protein homeostasis by coordinating protein turnover and quality control. Mutations in VCP lead to (cardio-)myopathy and neurodegenerative diseases such as inclusion body myopathy with Paget's disease of the bone and frontotemporal dementia (IBMPFD) or amyotrophic lateral sclerosis (ALS). To date, due to embryonic lethality, no constitutive VCP knockout animal model exists. Here, we generated a constitutive CRISPR/Cas9-induced vcp knockout zebrafish model. Similar to the phenotype of vcp morphant knockdown zebrafish embryos, we found that vcp-null embryos displayed significantly impaired cardiac and skeletal muscle function. By ultrastructural analysis of skeletal muscle cells and cardiomyocytes, we observed severely disrupted myofibrillar organization and accumulation of inclusion bodies as well as mitochondrial degeneration. vcp knockout was associated with a significant accumulation of ubiquitinated proteins, suggesting impaired proteasomal function. Additionally, markers of unfolded protein response (UPR)/ER-stress and autophagy-related mTOR signaling were elevated in vcp-deficient embryos, demonstrating impaired proteostasis in VCP-null zebrafish. In conclusion, our findings demonstrate the successful generation of a stable constitutive vcp knockout zebrafish line that will enable characterization of the detailed mechanistic underpinnings of vcp loss, particularly the impact of disturbed protein homeostasis on organ development and function in vivo.


Assuntos
Demência Frontotemporal , Músculo Estriado , Miosite de Corpos de Inclusão , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Mutação , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/metabolismo , Proteostase/genética , Proteína com Valosina/genética , Proteína com Valosina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
7.
J Mol Cell Cardiol ; 155: 25-35, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33549680

RESUMO

Genome-wide association studies identified Spen as a putative modifier of cardiac function, however, the precise function of Spen in the cardiovascular system is not known yet. Here, we analyzed for the first time the in vivo role of Spen in zebrafish and found that targeted Spen inactivation led to progressive impairment of cardiac function in the zebrafish embryo. In addition to diminished cardiac contractile force, Spen-deficient zebrafish embryos developed bradycardia, atrioventricular block and heart chamber fibrillation. Assessment of cardiac-specific transcriptional profiles identified Connexin 43 (Cx43), a cardiac gap junction protein and crucial regulator of cardiomyocyte-to-cardiomyocyte communication, to be significantly diminished in Spen-deficient zebrafish embryos. Similar to the situation in Spen-deficient embryos, Morpholino-mediated knockdown of cx43 in zebrafish resulted in cardiac contractile dysfunction, bradycardia, atrioventricular block and fibrillation of the cardiac chambers. Furthermore, ectopic overexpression of cx43 in Spen deficient embryos led to the reconstitution of cardiac contractile function and suppression of cardiac arrhythmia. Additionally, sensitizing experiments by simultaneously injecting sub-phenotypic concentrations of spen- and cx43-Morpholinos into zebrafish embryos resulted in pathological supra-additive effects. In summary, our findings highlight a crucial role of Spen in controlling cx43 expression and demonstrate the Spen-Cx43 axis to be a vital regulatory cascade that is indispensable for proper heart function in vivo.


Assuntos
Conexina 43/genética , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Fatores de Transcrição/deficiência , Animais , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Conexina 43/metabolismo , Modelos Animais de Doenças , Eletrocardiografia , Técnicas de Silenciamento de Genes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Insuficiência Cardíaca/fisiopatologia , Contração Miocárdica/genética , Fenótipo , Transcriptoma , Peixe-Zebra
8.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445174

RESUMO

In the human heart, the energy supplied by the production of ATP is predominately accomplished by ß-oxidation in mitochondria, using fatty acids (FAs) as the primary fuel. Long-chain acylcarnitines (LCACs) are intermediate forms of FA transport that are essential for FA delivery from the cytosol into mitochondria. Here, we analyzed the impact of the LCACs C18 and C18:1 on mitochondrial function and, subsequently, on heart functionality in the in vivo vertebrate model system of zebrafish (Danio rerio). Since LCACs are formed and metabolized in mitochondria, we assessed mitochondrial morphology, structure and density in C18- and C18:1-treated zebrafish and found no mitochondrial alterations compared to control-treated (short-chain acylcarnitine, C3) zebrafish embryos. However, mitochondrial function and subsequently ATP production was severely impaired in C18- and C18:1-treated zebrafish embryos. Furthermore, we found that C18 and C18:1 treatment of zebrafish embryos led to significantly impaired cardiac contractile function, accompanied by reduced heart rate and diminished atrial and ventricular fractional shortening, without interfering with cardiomyocyte differentiation, specification and growth. In summary, our findings provide insights into the direct role of long-chain acylcarnitines on vertebrate heart function by interfering with regular mitochondrial function and thereby energy allocation in cardiomyocytes.


Assuntos
Trifosfato de Adenosina/metabolismo , Carnitina/análogos & derivados , Ácidos Graxos/metabolismo , Cardiopatias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Peixe-Zebra , Animais , Carnitina/metabolismo , Modelos Animais de Doenças , Coração/fisiopatologia , Cardiopatias/patologia , Humanos , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Oxirredução , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia
9.
Hum Mol Genet ; 27(4): 706-715, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29315381

RESUMO

Mutations in the mitochondrially located protein CHCHD10 cause motoneuron disease by an unknown mechanism. In this study, we investigate the mutations p.R15L and p.G66V in comparison to wild-type CHCHD10 and the non-pathogenic variant p.P34S in vitro, in patient cells as well as in the vertebrate in vivo model zebrafish. We demonstrate a reduction of CHCHD10 protein levels in p.R15L and p.G66V mutant patient cells to approximately 50%. Quantitative real-time PCR revealed that expression of CHCHD10 p.R15L, but not of CHCHD10 p.G66V, is already abrogated at the mRNA level. Altered secondary structure and rapid protein degradation are observed with regard to the CHCHD10 p.G66V mutant. In contrast, no significant differences in expression, degradation rate or secondary structure of non-pathogenic CHCHD10 p.P34S are detected when compared with wild-type protein. Knockdown of CHCHD10 expression in zebrafish to about 50% causes motoneuron pathology, abnormal myofibrillar structure and motility deficits in vivo. Thus, our data show that the CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease primarily based on haploinsufficiency of CHCHD10.


Assuntos
Haploinsuficiência/fisiologia , Proteínas Mitocondriais/metabolismo , Doença dos Neurônios Motores/metabolismo , Animais , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Haploinsuficiência/genética , Humanos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Doença dos Neurônios Motores/genética , Mutação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
NMR Biomed ; 33(7): e4300, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32227427

RESUMO

Cardiovascular magnetic resonance imaging has proven valuable for the assessment of structural and functional cardiac abnormalities. Even although it is an established imaging method in small animals, the long acquisition times of gated or self-gated techniques still limit its widespread application. In this study, the application of tiny golden angle radial sparse MRI (tyGRASP) for real-time cardiac imaging was tested in 12 constitutive nexilin (Nexn) knock-out (KO) mice, both heterozygous (Het, N = 6) and wild-type (WT, N = 6), and the resulting functional parameters were compared with a well-established self-gating approach. Real-time images were reconstructed for different temporal resolutions of between 16.8 and 79.8 ms per image. The suggested approach was additionally tested for dobutamine stress and qualitative first-pass perfusion imaging. Measurements were repeated twice within 2 weeks for reproducibility assessment. In direct comparison with the high-quality, self-gated technique, the real-time approach did not show any significant differences in global function parameters for acquisition times below 50 ms (rest) and 31.5 ms (stress). Compared with WT, the end-diastolic volume (EDV) and end-systolic volume (ESV) were markedly higher (P < 0.05) and the ejection fraction (EF) was significantly lower in the Het Nexn-KO mice at rest (P < 0.001). For the stress investigation, a clear decrease of EDV and ESV, and an increase in EF, but maintained stroke volume, could be observed in both groups. Combined with ECG-triggering, tyGRASP provided first-pass perfusion data with a temporal resolution of one image per heartbeat, allowing the quantitative assessment of upslope curves in the blood-pool and myocardium. Excellent inter-study reproducibility was achieved in all the functional parameters. The tyGRASP is a valuable real-time MRI technique for mice, which significantly reduces the scan time in preclinical cardiac functional imaging, providing sufficient image quality for deriving accurate functional parameters, and has the potential to investigate real-time and beat-to-beat changes.


Assuntos
Algoritmos , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Animais , Estudos de Viabilidade , Feminino , Masculino , Camundongos Knockout , Perfusão , Reprodutibilidade dos Testes , Descanso/fisiologia , Estresse Fisiológico , Fatores de Tempo , Função Ventricular Esquerda/fisiologia
11.
Genes Dev ; 26(2): 114-9, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22241783

RESUMO

Protein lysine methylation is one of the most widespread post-translational modifications in the nuclei of eukaryotic cells. Methylated lysines on histones and nonhistone proteins promote the formation of protein complexes that control gene expression and DNA replication and repair. In the cytoplasm, however, the role of lysine methylation in protein complex formation is not well established. Here we report that the cytoplasmic protein chaperone Hsp90 is methylated by the lysine methyltransferase Smyd2 in various cell types. In muscle, Hsp90 methylation contributes to the formation of a protein complex containing Smyd2, Hsp90, and the sarcomeric protein titin. Deficiency in Smyd2 results in the loss of Hsp90 methylation, impaired titin stability, and altered muscle function. Collectively, our data reveal a cytoplasmic protein network that employs lysine methylation for the maintenance and function of skeletal muscle.


Assuntos
Citoplasma/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Animais , Embrião de Galinha , Conectina , Citoplasma/enzimologia , Histona-Lisina N-Metiltransferase/genética , Humanos , Lisina/metabolismo , Metilação , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Proteínas Quinases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Peixe-Zebra
12.
FASEB J ; 32(11): 6159-6173, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29879376

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels encode neuronal and cardiac pacemaker currents. The composition of pacemaker channel complexes in different tissues is poorly understood, and the presence of additional HCN modulating subunits was speculated. Here we show that vesicle-associated membrane protein-associated protein B (VAPB), previously associated with a familial form of amyotrophic lateral sclerosis 8, is an essential HCN1 and HCN2 modulator. VAPB significantly increases HCN2 currents and surface expression and has a major influence on the dendritic neuronal distribution of HCN2. Severe cardiac bradycardias in VAPB-deficient zebrafish and VAPB-/- mice highlight that VAPB physiologically serves to increase cardiac pacemaker currents. An altered T-wave morphology observed in the ECGs of VAPB-/- mice supports the recently proposed role of HCN channels for ventricular repolarization. The critical function of VAPB in native pacemaker channel complexes will be relevant for our understanding of cardiac arrhythmias and epilepsies, and provides an unexpected link between these diseases and amyotrophic lateral sclerosis.-Silbernagel, N., Walecki, M., Schäfer, M.-K. H., Kessler, M., Zobeiri, M., Rinné, S., Kiper, A. K., Komadowski, M. A., Vowinkel, K. S., Wemhöner, K., Fortmüller, L., Schewe, M., Dolga, A. M., Scekic-Zahirovic, J., Matschke, L. A., Culmsee, C., Baukrowitz, T., Monassier, L., Ullrich, N. D., Dupuis, L., Just, S., Budde, T., Fabritz, L., Decher, N. The VAMP-associated protein VAPB is required for cardiac and neuronal pacemaker channel function.


Assuntos
Coração/fisiologia , Ativação do Canal Iônico , Proteínas de Membrana/fisiologia , Neurônios/fisiologia , Marca-Passo Artificial , Animais , Proteínas de Transporte/fisiologia , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Feminino , Células HeLa , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Camundongos , Camundongos Knockout , Neurônios/citologia , Ratos , Ratos Sprague-Dawley , Proteínas de Transporte Vesicular , Xenopus laevis , Peixe-Zebra
13.
Cell Mol Life Sci ; 75(23): 4301-4319, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30030593

RESUMO

Genetic and functional studies suggest diverse pathways being affected in the neurodegenerative disease amyotrophic lateral sclerosis (ALS), while knowledge about converging disease mechanisms is rare. We detected a downregulation of microRNA-1825 in CNS and extra-CNS system organs of both sporadic (sALS) and familial ALS (fALS) patients. Combined transcriptomic and proteomic analysis revealed that reduced levels of microRNA-1825 caused a translational upregulation of tubulin-folding cofactor b (TBCB). Moreover, we found that excess TBCB led to depolymerization and degradation of tubulin alpha-4A (TUBA4A), which is encoded by a known ALS gene. Importantly, the increase in TBCB and reduction of TUBA4A protein was confirmed in brain cortex tissue of fALS and sALS patients, and led to motor axon defects in an in vivo model. Our discovery of a microRNA-1825/TBCB/TUBA4A pathway reveals a putative pathogenic cascade in both fALS and sALS extending the relevance of TUBA4A to a large proportion of ALS cases.


Assuntos
Esclerose Lateral Amiotrófica/genética , Perfilação da Expressão Gênica , Predisposição Genética para Doença/genética , MicroRNAs/genética , Proteínas Associadas aos Microtúbulos/genética , Tubulina (Proteína)/genética , Idoso , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Tubulina (Proteína)/metabolismo
14.
J Mol Cell Cardiol ; 120: 42-52, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29750993

RESUMO

The genetic underpinnings that orchestrate the vertebrate heart rate are not fully understood yet, but of high clinical importance, since diseases of cardiac impulse formation and propagation are common and severe human arrhythmias. To identify novel regulators of the vertebrate heart rate, we deciphered the pathogenesis of the bradycardia in the homozygous zebrafish mutant hiphop (hip) and identified a missense-mutation (N851K) in Na+/K+-ATPase α1-subunit (atp1a1a.1). N851K affects zebrafish Na+/K+-ATPase ion transport capacity, as revealed by in vitro pump current measurements. Inhibition of the Na+/K+-ATPase in vivo indicates that hip rather acts as a hypomorph than being a null allele. Consequently, reduced Na+/K+-ATPase function leads to prolonged QT interval and refractoriness in the hip mutant heart, as shown by electrocardiogram and in vivo electrical stimulation experiments. We here demonstrate for the first time that Na+/K+-ATPase plays an essential role in heart rate regulation by prolonging myocardial repolarization.


Assuntos
Bradicardia/genética , Frequência Cardíaca/genética , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Potenciais de Ação , Alelos , Animais , Bloqueio Atrioventricular/genética , Estimulação Elétrica , Eletrocardiografia , Genes Modificadores , Células HEK293 , Humanos , Bombas de Íon , Transporte de Íons , Mutação de Sentido Incorreto , Miócitos Cardíacos/metabolismo , Polimorfismo de Nucleotídeo Único , Estatísticas não Paramétricas
15.
Biochem Biophys Res Commun ; 496(2): 339-345, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29331378

RESUMO

Sarcomeric protein turnover needs to be tightly balanced to assure proper assembly and renewal of sarcomeric units within muscle tissues. The mechanisms regulating these fundamental processes are only poorly understood, but of great clinical importance since many cardiac and skeletal muscle diseases are associated with defective sarcomeric organization. The SET- and MYND domain containing protein 1b (Smyd1b) is known to play a crucial role in myofibrillogenesis by functionally interacting with the myosin chaperones Unc45b and Hsp90α1. In zebrafish, Smyd1b, Unc45b and Hsp90α1 are part of the misfolded myosin response (MMR), a regulatory transcriptional response that is activated by disturbed myosin homeostasis. Genome duplication in zebrafish led to a second smyd1 gene, termed smyd1a. Morpholino- and CRISPR/Cas9-mediated knockdown of smyd1a led to significant perturbations in sarcomere structure resulting in decreased cardiac as well as skeletal muscle function. Similar to Smyd1b, we found Smyd1a to localize to the sarcomeric M-band in skeletal and cardiac muscles. Overexpression of smyd1a efficiently compensated for the loss of Smyd1b in flatline (fla) mutant zebrafish embryos, rescued the myopathic phenotype and suppressed the MMR in Smyd1b-deficient embryos, suggesting overlapping functions of both Smyd1 paralogs. Interestingly, Smyd1a is not transcriptionally activated in Smyd1b-deficient fla mutants, demonstrating lack of genetic compensation despite the functional redundancy of both zebrafish Smyd1 paralogs.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/genética , Músculo Esquelético/metabolismo , Miócitos Cardíacos/metabolismo , Miosinas/genética , Sarcômeros/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Embrião não Mamífero , Duplicação Gênica , Edição de Genes , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/deficiência , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Morfolinos/genética , Morfolinos/metabolismo , Proteínas Musculares , Músculo Esquelético/patologia , Miócitos Cardíacos/patologia , Miosinas/metabolismo , Dobramento de Proteína , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Sarcômeros/patologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/metabolismo
16.
FASEB J ; 31(4): 1620-1638, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28138039

RESUMO

LIM domain proteins have been identified as essential modulators of cardiac biology and pathology; however, it is unclear which role the cysteine-rich LIM-only protein (CRP)4 plays in these processes. In studying CRP4 mutant mice, we found that their hearts developed normally, but lack of CRP4 exaggerated multiple parameters of the cardiac stress response to the neurohormone angiotensin II (Ang II). Aiming to dissect the molecular details, we found a link between CRP4 and the cardioprotective cGMP pathway, as well as a multiprotein complex comprising well-known hypertrophy-associated factors. Significant enrichment of the cysteine-rich intestinal protein (CRIP)1 in murine hearts lacking CRP4, as well as severe cardiac defects and premature death of CRIP1 and CRP4 morphant zebrafish embryos, further support the notion that depleting CRP4 is incompatible with a proper cardiac development and function. Together, amplified Ang II signaling identified CRP4 as a novel antiremodeling factor regulated, at least to some extent, by cardiac cGMP.-Straubinger, J., Boldt, K., Kuret, A., Deng, L., Krattenmacher, D., Bork, N., Desch, M., Feil, R., Feil, S., Nemer, M., Ueffing, M., Ruth, P., Just, S., Lukowski, R. Amplified pathogenic actions of angiotensin II in cysteine-rich LIM-only protein 4 negative mouse hearts.


Assuntos
Angiotensina II/metabolismo , Cardiomegalia/metabolismo , alfa-Defensinas/genética , Angiotensina II/farmacologia , Animais , Cardiomegalia/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , GMP Cíclico/metabolismo , Coração/efeitos dos fármacos , Coração/crescimento & desenvolvimento , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peixe-Zebra , alfa-Defensinas/metabolismo
17.
J Cell Sci ; 128(16): 3030-40, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26116573

RESUMO

Alternative splicing is one of the major mechanisms through which the proteomic and functional diversity of eukaryotes is achieved. However, the complex nature of the splicing machinery, its associated splicing regulators and the functional implications of alternatively spliced transcripts are only poorly understood. Here, we investigated the functional role of the splicing regulator rbfox1 in vivo using the zebrafish as a model system. We found that loss of rbfox1 led to progressive cardiac contractile dysfunction and heart failure. By using deep-transcriptome sequencing and quantitative real-time PCR, we show that depletion of rbfox1 in zebrafish results in an altered isoform expression of several crucial target genes, such as actn3a and hug. This study underlines that tightly regulated splicing is necessary for unconstrained cardiac function and renders the splicing regulator rbfox1 an interesting target for investigation in human heart failure and cardiomyopathy.


Assuntos
Processamento Alternativo/genética , Cardiomiopatias/genética , Insuficiência Cardíaca/genética , Transcriptoma/genética , Actinina/genética , Actinina/metabolismo , Animais , Cardiomiopatias/patologia , Insuficiência Cardíaca/fisiopatologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neuropeptídeos/genética , Fatores de Processamento de RNA , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/genética , Peixe-Zebra/genética
18.
Genesis ; 54(8): 431-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27295336

RESUMO

Gene therapeutic approaches to cure genetic diseases require tools to express the rescuing gene exclusively within the affected tissues. Viruses are often chosen as gene transfer vehicles but they have limited capacity for genetic information to be carried and transduced. In addition, to avoid off-target effects the therapeutic gene should be driven by a tissue-specific promoter in order to ensure expression in the target organs, tissues, or cell populations. The larger the promoter, the less space will be left for the respective gene. Thus, there is a need for small but tissue-specific promoters. Here, we describe a compact unc45b promoter fragment of 195 bp that retains the ability to drive gene expression exclusively in skeletal and cardiac muscle in zebrafish and mouse. Remarkably, the described unc45b promoter fragment not only drives muscle-specific expression but presents heat-shock inducibility, allowing a temporal and spatial quantity control of (trans)gene expression. Here, we demonstrate that the transgenic expression of the smyd1b gene driven by the unc45b promoter fragment is able to rescue the embryonically lethal heart and skeletal muscle defects in smyd1b-deficient flatline mutant zebrafish. Our findings demonstrate that the described muscle-specific unc45b promoter fragment might be a valuable tool for the development of genetic therapies in patients suffering from myopathies. genesis 54:431-438, 2016. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc.


Assuntos
Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Regiões Promotoras Genéticas , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Especificidade de Órgãos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra
19.
J Cell Sci ; 127(Pt 16): 3578-92, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24963132

RESUMO

Filamin C (FLNc) and Xin actin-binding repeat-containing proteins (XIRPs) are multi-adaptor proteins that are mainly expressed in cardiac and skeletal muscles and which play important roles in the assembly and repair of myofibrils and their attachment to the membrane. We identified the dystrophin-binding protein aciculin (also known as phosphoglucomutase-like protein 5, PGM5) as a new interaction partner of FLNc and Xin. All three proteins colocalized at intercalated discs of cardiac muscle and myotendinous junctions of skeletal muscle, whereas FLNc and aciculin also colocalized in mature Z-discs. Bimolecular fluorescence complementation experiments in developing cultured mammalian skeletal muscle cells demonstrated that Xin and aciculin also interact in FLNc-containing immature myofibrils and areas of myofibrillar remodeling and repair induced by electrical pulse stimulation (EPS). Fluorescence recovery after photobleaching (FRAP) experiments showed that aciculin is a highly dynamic and mobile protein. Aciculin knockdown in myotubes led to failure in myofibril assembly, alignment and membrane attachment, and a massive reduction in myofibril number. A highly similar phenotype was found upon depletion of aciculin in zebrafish embryos. Our results point to a thus far unappreciated, but essential, function of aciculin in myofibril formation, maintenance and remodeling.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Filaminas/metabolismo , Miofibrilas/metabolismo , Proteínas Nucleares/metabolismo , Fosfoglucomutase/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/genética , Filaminas/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mioblastos/metabolismo , Miofibrilas/genética , Proteínas Nucleares/genética , Fosfoglucomutase/genética , Ligação Proteica
20.
Biochem Biophys Res Commun ; 477(4): 581-588, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27343557

RESUMO

In search for novel key regulators of cardiac valve formation, we isolated the zebrafish cardiac valve mutant ping pong (png). We find that an insertional promoter mutation within the zebrafish mediator complex subunit 10 (med10) gene is leading to impaired heart valve formation. Expression of the T-box transcription factor 2b (Tbx2b), known to be essential in cardiac valve development, is severely reduced in png mutant hearts. We demonstrate here that transient reconstitution of Tbx2b expression rescues AV canal development in png mutant zebrafish. By contrast, overexpression of Forkhead box N4 (Foxn4), a known upstream regulator of Tbx2b, is not capable to reconstitute tbx2b expression and heart valve formation in Med10-deficient png mutant hearts. Interestingly, hyaluronan synthase 2 (has2), a known downstream target of Tbx2 and producer of hyaluronan (HA) - a major ECM component of the cardiac jelly and critical for proper heart valve development - is completely absent in ping pong mutant hearts. We propose here a rather unique role of Med10 in orchestrating cardiac valve formation by mediating Foxn4 dependent tbx2b transcription, expression of Has2 and subsequently proper development of the cardiac jelly.


Assuntos
Glucuronosiltransferase/metabolismo , Valvas Cardíacas/embriologia , Complexo Mediador/fisiologia , Proteínas com Domínio T/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Fatores de Transcrição Forkhead/metabolismo , Valvas Cardíacas/metabolismo , Hialuronan Sintases , Mutação , Transdução de Sinais , Proteínas com Domínio T/metabolismo , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA