Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(17): e2112225119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35452310

RESUMO

Hypocretin (Hcrt), also known as orexin, neuropeptide signaling stabilizes sleep and wakefulness in all vertebrates. A lack of Hcrt causes the sleep disorder narcolepsy, and increased Hcrt signaling has been speculated to cause insomnia, but while the signaling pathways of Hcrt are relatively well-described, the intracellular mechanisms that regulate its expression remain unclear. Here, we tested the role of microRNAs (miRNAs) in regulating Hcrt expression. We found that miR-137, miR-637, and miR-654-5p target the human HCRT gene. miR-137 is evolutionarily conserved and also targets mouse Hcrt as does miR-665. Inhibition of miR-137 specifically in Hcrt neurons resulted in Hcrt upregulation, longer episodes of wakefulness, and significantly longer wake bouts in the first 4 h of the active phase. IL-13 stimulation upregulated endogenous miR-137, while Hcrt mRNA decreased both in vitro and in vivo. Furthermore, knockdown of miR-137 in zebrafish substantially increased wakefulness. Finally, we show that in humans, the MIR137 locus is genetically associated with sleep duration. In conclusion, these results show that an evolutionarily conserved miR-137:Hcrt interaction is involved in sleep­wake regulation.


Assuntos
MicroRNAs , Neuropeptídeos , Animais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , MicroRNAs/genética , Neuropeptídeos/metabolismo , Orexinas/genética , Orexinas/metabolismo , Sono/genética , Vigília/genética , Peixe-Zebra/metabolismo
2.
Pflugers Arch ; 475(1): 23-35, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35768698

RESUMO

As a possible body signal influencing brain dynamics, respiration is fundamental for perception, cognition, and emotion. The olfactory system has recently acquired its credentials by proving to be crucial in the transmission of respiratory influence on the brain via the sensitivity to nasal airflow of its receptor cells. Here, we present recent findings evidencing respiration-related activities in the brain. Then, we review the data explaining the fact that breathing is (i) nasal and (ii) being slow and deep is crucial in its ability to stimulate the olfactory system and consequently influence the brain. In conclusion, we propose a possible scenario explaining how this optimal respiratory regime can promote changes in brain dynamics of an olfacto-limbic-respiratory circuit, providing a possibility to induce calm and relaxation by coordinating breathing regime and brain state.


Assuntos
Encéfalo , Respiração , Bulbo Olfatório
3.
J Neurophysiol ; 130(6): 1552-1566, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37964739

RESUMO

In recent years, several studies have shown a respiratory drive of the local field potential (LFP) in numerous brain areas so that the respiratory rhythm could be considered as a master clock promoting communication between distant brain locations. However, outside of the olfactory system, it remains unknown whether the respiratory rhythm could shape membrane potential (MP) oscillations. To fill this gap, we co-recorded MP and LFP activities in different nonolfactory brain areas, medial prefrontal cortex (mPFC), primary somatosensory cortex (S1), primary visual cortex (V1), and hippocampus (HPC), in urethane-anesthetized rats. Using respiratory cycle-by-cycle analysis, we observed that respiration could modulate both MP and spiking discharges in all recorded areas during episodes that we called respiration-related oscillations (RRo). Further quantifications revealed that RRo episodes were transient in most neurons (5 consecutive respiratory cycles in average). RRo development in MP was largely correlated with the presence of respiratory modulation in the LFP. By showing that the respiratory rhythm influenced brain activities deep to the MP of nonolfactory neurons, our data support the idea that respiratory rhythm could mediate long-range communication between brain areas.NEW & NOTEWORTHY In this study, we evidenced strong respiratory-driven oscillations of neuronal membrane potential and spiking discharge in various nonolfactory areas of the mammal brain. These oscillations were found in the medial prefrontal cortex, primary somatosensory cortex, primary visual cortex, and hippocampus. These findings support the idea that respiratory rhythm could be used as a common clock to set the dynamics of large-scale neuronal networks on the same slow rhythm.


Assuntos
Hipocampo , Respiração , Ratos , Animais , Potenciais da Membrana , Hipocampo/fisiologia , Taxa Respiratória , Neurônios/fisiologia , Ritmo Teta , Mamíferos
4.
Sci Rep ; 11(1): 7044, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782487

RESUMO

A respiration-locked activity in the olfactory brain, mainly originating in the mechano-sensitivity of olfactory sensory neurons to air pressure, propagates from the olfactory bulb to the rest of the brain. Interestingly, changes in nasal airflow rate result in reorganization of olfactory bulb response. By leveraging spontaneous variations of respiratory dynamics during natural conditions, we investigated whether respiratory drive also varies with nasal airflow movements. We analyzed local field potential activity relative to respiratory signal in various brain regions during waking and sleep states. We found that respiration regime was state-specific, and that quiet waking was the only vigilance state during which all the recorded structures can be respiration-driven whatever the respiratory frequency. Using CO2-enriched air to alter respiratory regime associated to each state and a respiratory cycle based analysis, we evidenced that the large and strong brain drive observed during quiet waking was related to an optimal trade-off between depth and duration of inspiration in the respiratory pattern, characterizing this specific state. These results show for the first time that changes in respiration regime affect cortical dynamics and that the respiratory regime associated with rest is optimal for respiration to drive the brain.


Assuntos
Neurônios Receptores Olfatórios/fisiologia , Taxa Respiratória , Potenciais de Ação , Animais , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Córtex Olfatório/fisiologia , Pletismografia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA