Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nature ; 619(7971): 724-732, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438522

RESUMO

The presence and distribution of preserved organic matter on the surface of Mars can provide key information about the Martian carbon cycle and the potential of the planet to host life throughout its history. Several types of organic molecules have been previously detected in Martian meteorites1 and at Gale crater, Mars2-4. Evaluating the diversity and detectability of organic matter elsewhere on Mars is important for understanding the extent and diversity of Martian surface processes and the potential availability of carbon sources1,5,6. Here we report the detection of Raman and fluorescence spectra consistent with several species of aromatic organic molecules in the Máaz and Séítah formations within the Crater Floor sequences of Jezero crater, Mars. We report specific fluorescence-mineral associations consistent with many classes of organic molecules occurring in different spatial patterns within these compositionally distinct formations, potentially indicating different fates of carbon across environments. Our findings suggest there may be a diversity of aromatic molecules prevalent on the Martian surface, and these materials persist despite exposure to surface conditions. These potential organic molecules are largely found within minerals linked to aqueous processes, indicating that these processes may have had a key role in organic synthesis, transport or preservation.

2.
Proc Natl Acad Sci U S A ; 115(42): 10594-10599, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30275325

RESUMO

Photic zone euxinia (PZE) is a condition where anoxic, H2S-rich waters occur in the photic zone (PZ). PZE has been invoked as an impediment to the evolution of complex life on early Earth and as a kill mechanism for Phanerozoic mass extinctions. Here, we investigate the potential application of mercury (Hg) stable isotopes in marine sedimentary rocks as a proxy for PZE by measuring Hg isotope compositions in late Mesoproterozoic (∼1.1 Ga) shales that have independent evidence of PZE during discrete intervals. Strikingly, a significantly negative shift of Hg mass-independent isotope fractionation (MIF) was observed during euxinic intervals, suggesting changes in Hg sources or transformations in oceans coincident with the development of PZE. We propose that the negative shift of Hg MIF was most likely caused by (i) photoreduction of Hg(II) complexed by reduced sulfur ligands in a sulfide-rich PZ, and (ii) enhanced sequestration of atmospheric Hg(0) to the sediments by thiols and sulfide that were enriched in the surface ocean as a result of PZE. This study thus demonstrates that Hg isotope compositions in ancient marine sedimentary rocks can be a promising proxy for PZE and therefore may provide valuable insights into changes in ocean chemistry and its impact on the evolution of life.

3.
Proc Natl Acad Sci U S A ; 119(45): e2216019119, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36269866

Assuntos
Carbonatos
4.
Sci Rep ; 12(1): 2727, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177743

RESUMO

Otoliths are frequently used to infer environmental conditions or fish life history events based on trace-element concentrations. However, otoliths can be comprised of any one or combination of the three most common polymorphs of calcium carbonate-aragonite, calcite, and vaterite-which can affect the ecological interpretation of otolith trace-element results. Previous studies have reported heterogeneous calcium carbonate compositions between left and right otoliths but did not provide quantitative assessments of polymorph abundances. In this study, neutron diffraction and Raman spectroscopy were used to identify and quantify mineralogical compositions of Chinook salmon Oncorhynchus tshawytscha otolith pairs. We found mineralogical compositions frequently differed between otoliths in a pair and accurate calcium carbonate polymorph identification was rarely possible by visual inspection alone. The prevalence of multiple polymorphs in otoliths is not well-understood, and future research should focus on identifying otolith compositions and investigate how variations in mineralogy affect trace-element incorporation and potentially bias environmental interpretations.

5.
Astrobiology ; 22(11): 1310-1329, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36112369

RESUMO

At a Mars analog site in Utah, we tested two science operation methods for data acquisition and decision-making protocols: a scenario where the tactical day is preplanned, but major adjustments may still be made before plan delivery; and a scenario in which the sol path must largely be planned before a given tactical planning day and very few adjustments to the plan may be made. The goal was to provide field-tested insight into operations planning for rover missions where science operations must facilitate the efficient choice of sampling locations at a site relevant to searching for habitability and biosignatures. Results of the test indicate that preplanning sol paths did not result in a sol cost savings nor did it improve science return or optimal biologically relevant sample collection. In addition because facies variations in an environment can be subtle and evident only at scales below orbital resolution, acquiring systematic observations is crucial. We also noted that while spectral data provided insight into the chemical components as a whole at this site, they did not provide a guide to targets for which the traverse should be altered. Finally, strategic science planning must include a special effort to account for terrain.


Assuntos
Exobiologia , Marte , Exobiologia/métodos , Meio Ambiente Extraterreno , Objetivos , Planejamento Estratégico
6.
Science ; 378(6624): 1105-1110, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36417498

RESUMO

The Perseverance rover landed in Jezero crater, Mars, in February 2021. We used the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument to perform deep-ultraviolet Raman and fluorescence spectroscopy of three rocks within the crater. We identify evidence for two distinct ancient aqueous environments at different times. Reactions with liquid water formed carbonates in an olivine-rich igneous rock. A sulfate-perchlorate mixture is present in the rocks, which probably formed by later modifications of the rocks by brine. Fluorescence signatures consistent with aromatic organic compounds occur throughout these rocks and are preserved in minerals related to both aqueous environments.

7.
Nat Commun ; 12(1): 351, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441548

RESUMO

Resolving how Earth surface redox conditions evolved through the Proterozoic Eon is fundamental to understanding how biogeochemical cycles have changed through time. The redox sensitivity of cerium relative to other rare earth elements and its uptake in carbonate minerals make the Ce anomaly (Ce/Ce*) a particularly useful proxy for capturing redox conditions in the local marine environment. Here, we report Ce/Ce* data in marine carbonate rocks through 3.5 billion years of Earth's history, focusing in particular on the mid-Proterozoic Eon (i.e., 1.8 - 0.8 Ga). To better understand the role of atmospheric oxygenation, we use Ce/Ce* data to estimate the partial pressure of atmospheric oxygen (pO2) through this time. Our thermodynamics-based modeling supports a major rise in atmospheric oxygen level in the aftermath of the Great Oxidation Event (~ 2.4 Ga), followed by invariant pO2 of about 1% of present atmospheric level through most of the Proterozoic Eon (2.4 to 0.65 Ga).

8.
Geobiology ; 19(6): 557-584, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34296512

RESUMO

Organic microfossils in Meso- and Neoproterozoic rocks are of key importance to track the emergence and evolution of eukaryotic life. An increasing number of studies combine Raman spectroscopy with synchrotron-based methods to characterize these microfossils. A recurring observation is that Raman spectra of organic microfossils show negligible variation on a sample scale and that variation between different samples can be explained by differences in thermal maturation or in the biologic origin of organic precursor material. There is a paucity of work, however, that explores the extent to which the petrographic framework and diagenetic processes might influence the chemical structure of organic materials. We present a detailed Raman spectroscopy-based study of a complex organic microfossil assemblage in the ca. 1 Ga old Angmaat Formation, Baffin Island, Canada. This formation contains abundant early diagenetic chert that preserves silicified microbial mats with numerous, readily identifiable organic microfossils. Individual chert beds show petrographic differences with discrete episodes of cementation and recrystallization. Raman spectroscopy reveals measurable variation of organic maturity between samples and between neighboring organic microfossils of the same taxonomy and taphonomic state. Scanning transmission X-ray microscopy performed on taphonomically similar coccoidal microfossils from the same thin section shows distinct chemical compositions, with varying ratios of aromatic compounds to ketones and phenols. Such observations imply that geochemical variation of organic matter is not necessarily coupled to thermal alteration or organic precursor material. Variation of the Raman signal across single samples is most likely linked to the diagenetic state of analyzed materials and implies an association between organic preservation and access to diagenetic fluids. Variation in the maturity of individual microfossils may be a natural outcome of local diagenetic processes and potentially exceeds differences derived from precursor organic material. These observations stress the importance of detailed in situ characterization by Raman spectroscopy to identify target specimens for further chemical analysis.


Assuntos
Fósseis , Análise Espectral Raman , Canadá , Sedimentos Geológicos , Microscopia
9.
Nature ; 431(7010): 834-8, 2004 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-15483609

RESUMO

Progressive oxygenation of the Earth's early biosphere is thought to have resulted in increased sulphide oxidation during continental weathering, leading to a corresponding increase in marine sulphate concentration. Accurate reconstruction of marine sulphate reservoir size is therefore important for interpreting the oxygenation history of early Earth environments. Few data, however, specifically constrain how sulphate concentrations may have changed during the Proterozoic era (2.5-0.54 Gyr ago). Prior to 2.2 Gyr ago, when oxygen began to accumulate in the Earth's atmosphere, sulphate concentrations are inferred to have been <1 mM and possibly <200 microM, on the basis of limited isotopic variability preserved in sedimentary sulphides and experimental data showing suppressed isotopic fractionation at extremely low sulphate concentrations. By 0.8 Gyr ago, oxygen and thus sulphate levels may have risen significantly. Here we report large stratigraphic variations in the sulphur isotope composition of marine carbonate-associated sulphate, and use a rate-dependent model for sulphur isotope change that allows us to track changes in marine sulphate concentrations throughout the Proterozoic. Our calculations indicate sulphate levels between 1.5 and 4.5 mM, or 5-15 per cent of modern values, for more than 1 Gyr after initial oxygenation of the Earth's biosphere. Persistence of low oceanic sulphate demonstrates the protracted nature of Earth's oxygenation. It links biospheric evolution to temporal patterns in the depositional behaviour of marine iron- and sulphur-bearing minerals, biological cycling of redox-sensitive elements and availability of trace metals essential to eukaryotic development.


Assuntos
Meio Ambiente , Oxigênio/metabolismo , Sulfatos/metabolismo , Atmosfera/química , Evolução Biológica , Sulfato de Cálcio/metabolismo , Carbonatos/metabolismo , Células Eucarióticas/metabolismo , Sedimentos Geológicos/química , Água do Mar/química , Fatores de Tempo
10.
Astrobiology ; 20(3): 327-348, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32023426

RESUMO

We conducted a field test at a potential Mars analog site to provide insight into planning for future robotic missions such as Mars 2020, where science operations must facilitate efficient choice of biologically relevant sampling locations. We compared two data acquisition and decision-making protocols currently used by Mars Science Laboratory: (1) a linear approach, where sites are examined as they are encountered and (2) a walkabout approach, in which the field site is first examined with remote rover instruments to gain an understanding of regional context followed by deployment of time- and power-intensive contact and sampling instruments on a smaller subset of locations. The walkabout method was advantageous in terms of both the time required to execute and a greater confidence in results and interpretations, leading to enhanced ability to tailor follow-on observations to better address key science and sampling goals. This advantage is directly linked to the walkabout method's ability to provide broad geological context earlier in the science analysis process. For Mars 2020, and specifically for small regions to be explored (e.g., <1 km2), we recommend that the walkabout approach be considered where possible, to provide early context and time for the science team to develop a coherent suite of hypotheses and robust ways to test them.


Assuntos
Exobiologia/métodos , Meio Ambiente Extraterreno , Geologia/métodos , Marte , Projetos de Pesquisa , Exobiologia/instrumentação , Geologia/instrumentação , Veículos Off-Road , Robótica , Simulação de Ambiente Espacial
11.
Space Sci Rev ; 216(8)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33568875

RESUMO

The Mars 2020 Perseverance rover landing site is located within Jezero crater, a ∼ 50 km diameter impact crater interpreted to be a Noachian-aged lake basin inside the western edge of the Isidis impact structure. Jezero hosts remnants of a fluvial delta, inlet and outlet valleys, and infill deposits containing diverse carbonate, mafic, and hydrated minerals. Prior to the launch of the Mars 2020 mission, members of the Science Team collaborated to produce a photogeologic map of the Perseverance landing site in Jezero crater. Mapping was performed at a 1:5000 digital map scale using a 25 cm/pixel High Resolution Imaging Science Experiment (HiRISE) orthoimage mosaic base map and a 1 m/pixel HiRISE stereo digital terrain model. Mapped bedrock and surficial units were distinguished by differences in relative brightness, tone, topography, surface texture, and apparent roughness. Mapped bedrock units are generally consistent with those identified in previously published mapping efforts, but this study's map includes the distribution of surficial deposits and sub-units of the Jezero delta at a higher level of detail than previous studies. This study considers four possible unit correlations to explain the relative age relationships of major units within the map area. Unit correlations include previously published interpretations as well as those that consider more complex interfingering relationships and alternative relative age relationships. The photogeologic map presented here is the foundation for scientific hypothesis development and strategic planning for Perseverance's exploration of Jezero crater.

12.
Geobiology ; 17(2): 199-222, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30548907

RESUMO

Environmental fluctuations are recorded in a variety of sedimentary archives of lacustrine depositional systems. Geochemical signals recovered from bottom sediments in closed-basin lakes are among the most sensitive paleoenvironmental indicators and are commonly used in reconstructing lake evolution. Microbialites (i.e., organosedimentary deposits accreted through microbial trapping and binding of detrital sediment or in situ mineral precipitation on organics [Palaios, 2, 1987, 241]), however, have been largely overlooked as paleoenvironmental repositories. Here, we investigate concentrically laminated mineralized microbialites from Laguna Negra, a high-altitude (4,100 m above sea level) hypersaline, closed-basin lake in northwestern Argentina, and explore the potential for recovery of environmental signals from these unique sedimentary archives. Spatial heterogeneity in hydrological regime helps define zones inside Laguna Negra, each with their own morphologically distinct microbialite type. Most notably, platey microbialites (in Zone 3A) are precipitated by evaporative concentration processes, while discoidal oncolites (in Zone 3C) are interpreted result from fluid mixing and biologically mediated nucleation. This spatial heterogeneity is reflected in petrographically distinct carbonate fabrics: micritic, botryoidal, and isopachous. Fabric type is interpreted to reflect a combination of physical and biological influences during mineralization, and paired C-isotope measurement of carbonate and organic matter supports ecological differences as a dominant control on C-isotopic evolution between zones. Laminae of Laguna Negra microbialites preserve a range of δ13 Ccarb from +5.75‰ to +18.25‰ and δ18 Ocarb from -2.04‰ to +9.28‰. Temporal trends of lower carbon and oxygen isotopic compositions suggest that the influence of CO2 degassing associated with evaporation has decreased over time. Combined, these results indicate that microbialite archives can provide data that aid in interpretation of both lake paleohydrology and paleoenvironmental change.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/química , Lagos/química , Argentina , Carbonatos/metabolismo , Minerais/metabolismo , Isótopos de Oxigênio/metabolismo
13.
Earth Space Sci ; 4(8): 506-539, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-29098171

RESUMO

The Mars Science Laboratory Mast camera and Descent Imager investigations were designed, built, and operated by Malin Space Science Systems of San Diego, CA. They share common electronics and focal plane designs but have different optics. There are two Mastcams of dissimilar focal length. The Mastcam-34 has an f/8, 34 mm focal length lens, and the M-100 an f/10, 100 mm focal length lens. The M-34 field of view is about 20° × 15° with an instantaneous field of view (IFOV) of 218 µrad; the M-100 field of view (FOV) is 6.8° × 5.1° with an IFOV of 74 µrad. The M-34 can focus from 0.5 m to infinity, and the M-100 from ~1.6 m to infinity. All three cameras can acquire color images through a Bayer color filter array, and the Mastcams can also acquire images through seven science filters. Images are ≤1600 pixels wide by 1200 pixels tall. The Mastcams, mounted on the ~2 m tall Remote Sensing Mast, have a 360° azimuth and ~180° elevation field of regard. Mars Descent Imager is fixed-mounted to the bottom left front side of the rover at ~66 cm above the surface. Its fixed focus lens is in focus from ~2 m to infinity, but out of focus at 66 cm. The f/3 lens has a FOV of ~70° by 52° across and along the direction of motion, with an IFOV of 0.76 mrad. All cameras can acquire video at 4 frames/second for full frames or 720p HD at 6 fps. Images can be processed using lossy Joint Photographic Experts Group and predictive lossless compression.

14.
Science ; 310(5753): 1477-9, 2005 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-16322453

RESUMO

The environmental expression of sulfur compound disproportionation has been placed between 640 and 1050 million years ago (Ma) and linked to increases in atmospheric oxygen. These arguments have their basis in temporal changes in the magnitude of 34S/32S fractionations between sulfate and sulfide. Here, we present a Proterozoic seawater sulfate isotope record that includes the less abundant sulfur isotope 33S. These measurements imply that sulfur compound disproportionation was an active part of the sulfur cycle by 1300 Ma and that progressive Earth surface oxygenation may have characterized the Mesoproterozoic.


Assuntos
Meio Ambiente , Células Procarióticas , Enxofre , Células Eucarióticas/metabolismo , Evolução Planetária , Sedimentos Geológicos , Oxirredução , Oxigênio , Células Procarióticas/metabolismo , Água do Mar , Enxofre/metabolismo , Isótopos de Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA