Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(3): 450-461, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36001352

RESUMO

Nutritional influences have been discussed as potential modulators of Parkinson's disease (PD) pathology through various epidemiological and physiological studies. In animal models, a high-fat diet (HFD) with greater intake of lipid-derived calories leads to accelerated disease onset and progression. The underlying molecular mechanisms of HFD-induced aggravated pathology, however, remain largely unclear. In this study, we aimed to further illuminate the effects of a fat-enriched diet in PD by examining the brainstem and hippocampal transcriptome of alpha-synuclein transgenic mice exposed to a life-long HFD. Investigating individual transcript isoforms, differential gene expression and co-expression clusters, we observed that transcriptional differences between wild-type (WT) and transgenic animals intensified in both regions under HFD. Both brainstem and hippocampus displayed strikingly similar transcriptomic perturbation patterns. Interestingly, expression differences resulted mainly from responses in WT animals to HFD, while these genes remained largely unchanged or were even slightly oppositely regulated by diet in transgenic animals. Genes and co-expressed gene groups exhibiting this dysregulation were linked to metabolic and mitochondrial pathways. Our findings propose the failure of metabolic adaptions as the potential explanation for accelerated disease unfolding under exposure to HFD. From the identified clusters of co-expressed genes, several candidates lend themselves to further functional investigations.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Camundongos , Animais , Camundongos Transgênicos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Dieta Hiperlipídica/efeitos adversos , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL
2.
Proc Natl Acad Sci U S A ; 119(24): e2119804119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35666874

RESUMO

Single-cell transcriptomics has revealed specific glial activation states associated with the pathogenesis of neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. While these findings may eventually lead to new therapeutic opportunities, little is known about how these glial responses are reflected by biomarker changes in bodily fluids. Such knowledge, however, appears crucial for patient stratification, as well as monitoring disease progression and treatment responses in clinical trials. Here, we took advantage of well-described mouse models of ß-amyloidosis and α-synucleinopathy to explore cerebrospinal fluid (CSF) proteome changes related to their respective proteopathic lesions. Nontargeted liquid chromatography-mass spectrometry revealed that the majority of proteins that undergo age-related changes in CSF of either mouse model were linked to microglia and astrocytes. Specifically, we identified a panel of more than 20 glial-derived proteins that were increased in CSF of aged ß-amyloid precursor protein- and α-synuclein-transgenic mice and largely overlap with previously described disease-associated glial genes identified by single-cell transcriptomics. Our results also show that enhanced shedding is responsible for the increase of several of the identified glial CSF proteins as exemplified for TREM2. Notably, the vast majority of these proteins can also be quantified in human CSF and reveal changes in Alzheimer's disease cohorts. The finding that cellular transcriptome changes translate into corresponding changes of CSF proteins is of clinical relevance, supporting efforts to identify fluid biomarkers that reflect the various functional states of glial responses in cerebral proteopathies, such as Alzheimer's and Parkinson's disease.


Assuntos
Doença de Alzheimer , Líquido Cefalorraquidiano , Neuroglia , Doença de Parkinson , Proteoma , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/metabolismo , Animais , Biomarcadores/líquido cefalorraquidiano , Líquido Cefalorraquidiano/metabolismo , Perfilação da Expressão Gênica , Humanos , Camundongos , Neuroglia/metabolismo , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/metabolismo , Proteoma/metabolismo , Análise de Célula Única , Proteínas tau
3.
Mov Disord ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38586902

RESUMO

BACKGROUND: Most Parkinson's disease (PD) loci have shown low prevalence in the Indian population, highlighting the need for further research. OBJECTIVE: The aim of this study was to characterize a novel phosphatase tensin homolog-induced serine/threonine kinase 1 (PINK1) mutation causing PD in an Indian family. METHODS: Exome sequencing of a well-characterized Indian family with PD. A novel PINK1 mutation was studied by in silico modeling using AlphaFold2, expression of mutant PINK1 in human cells depleted of functional endogenous PINK1, followed by quantitative image analysis and biochemical assessment. RESULTS: We identified a homozygous chr1:20648535-20648535 T>C on GRCh38 (p.F385S) mutation in exon 6 of PINK1, which was absent in 1029 genomes from India and in other known databases. PINK1 F385S lies within the highly conserved Deutsche Forschungsgemeinschaft (DFG) motif, destabilizes its active state, and impairs phosphorylation of ubiquitin at serine 65 and proper engagement of parkin upon mitochondrial depolarization. CONCLUSIONS: We characterized a novel nonconservative mutation in the DFG motif of PINK1, which causes loss of its ubiquitin kinase activity and inhibition of mitophagy. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

4.
Mol Cell Proteomics ; 21(2): 100191, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34974192

RESUMO

Mitophagy, the selective degradation of mitochondria by autophagy, affects defective mitochondria following damage or stress. At the onset of mitophagy, parkin ubiquitylates proteins on the mitochondrial outer membrane. While the role of parkin at the onset of mitophagy is well understood, less is known about its activity during later stages in the process. Here, we used HeLa cells expressing catalytically active or inactive parkin to perform temporal analysis of the proteome, ubiquitylome, and phosphoproteome during 18 h after induction of mitophagy by mitochondrial uncoupler carbonyl cyanide m-chlorophenyl hydrazine. Abundance profiles of proteins downregulated in parkin-dependent manner revealed a stepwise and "outside-in" directed degradation of mitochondrial subcompartments. While ubiquitylation of mitochondrial outer membrane proteins was enriched among early parkin-dependent targets, numerous mitochondrial inner membrane, matrix, and cytosolic proteins were also found ubiquitylated at later stages of mitophagy. Phosphoproteome analysis revealed a possible crosstalk between phosphorylation and ubiquitylation during mitophagy on key parkin targets, such as voltage-dependent anion channel 2.


Assuntos
Mitofagia , Ubiquitina-Proteína Ligases , Células HeLa , Humanos , Fosforilação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
5.
Proteomics ; 23(23-24): e2200410, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37671599

RESUMO

Trans-activation response DNA binding protein of 43 kDa (TDP-43) regulates a great variety of cellular processes in the nucleus and cytosol. In addition, a defined subset of neurodegenerative diseases is characterized by nuclear depletion of TDP-43 as well as cytosolic mislocalization and aggregation. To perform its diverse functions TDP-43 can associate with different ribonucleoprotein complexes. Combined with transcriptomics, MS interactome studies have unveiled associations between TDP-43 and the spliceosome machinery, polysomes and RNA granules. Moreover, the highly dynamic, low-valency interactions regulated by its low-complexity domain calls for innovative proximity labeling methodologies. In addition to protein partners, the analysis of post-translational modifications showed that they may play a role in the nucleocytoplasmic shuttling, RNA binding, liquid-liquid phase separation and protein aggregation of TDP-43. Here we review the various TDP-43 ribonucleoprotein complexes characterized so far, how they contribute to the diverse functions of TDP-43, and roles of post-translational modifications. Further understanding of the fluid dynamic properties of TDP-43 in ribonucleoprotein complexes, RNA granules, and self-assemblies will advance the understanding of RNA processing in cells and perhaps help to develop novel therapeutic approaches for TDPopathies.


Assuntos
Agregados Proteicos , Proteômica , Proteínas de Ligação a DNA/genética , Ribonucleoproteínas
6.
Proc Natl Acad Sci U S A ; 117(38): 23925-23931, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900929

RESUMO

Medin is the most common amyloid known in humans, as it can be found in blood vessels of the upper body in virtually everybody over 50 years of age. However, it remains unknown whether deposition of Medin plays a causal role in age-related vascular dysfunction. We now report that aggregates of Medin also develop in the aorta and brain vasculature of wild-type mice in an age-dependent manner. Strikingly, genetic deficiency of the Medin precursor protein, MFG-E8, eliminates not only vascular aggregates but also prevents age-associated decline of cerebrovascular function in mice. Given the prevalence of Medin aggregates in the general population and its role in vascular dysfunction with aging, targeting Medin may become a novel approach to sustain healthy aging.


Assuntos
Envelhecimento/metabolismo , Amiloide/metabolismo , Antígenos de Superfície/metabolismo , Proteínas do Leite/metabolismo , Doenças Vasculares/metabolismo , Idoso de 80 Anos ou mais , Amiloide/genética , Animais , Antígenos de Superfície/genética , Aorta/metabolismo , Aorta/patologia , Química Encefálica/fisiologia , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Leite/genética , Doenças Vasculares/patologia
7.
J Biol Chem ; 297(5): 101339, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34688664

RESUMO

Mitochondria are important organelles in eukaryotes. Turnover and quality control of mitochondria are regulated at the transcriptional and posttranslational level by several cellular mechanisms. Removal of defective mitochondrial proteins is mediated by mitochondria resident proteases or by proteasomal degradation of individual proteins. Clearance of bulk mitochondria occurs via a selective form of autophagy termed mitophagy. In yeast and some developing metazoan cells (e.g., oocytes and reticulocytes), mitochondria are largely removed by ubiquitin-independent mechanisms. In such cases, the regulation of mitophagy is mediated via phosphorylation of mitochondria-anchored autophagy receptors. On the other hand, ubiquitin-dependent recruitment of cytosolic autophagy receptors occurs in situations of cellular stress or disease, where dysfunctional mitochondria would cause oxidative damage. In mammalian cells, a well-studied ubiquitin-dependent mitophagy pathway induced by mitochondrial depolarization is regulated by the mitochondrial protein kinase PINK1, which upon activation recruits the ubiquitin ligase parkin. Here, we review mechanisms of mitophagy with an emphasis on posttranslational modifications that regulate various mitophagy pathways. We describe the autophagy components involved with particular emphasis on posttranslational modifications. We detail the phosphorylations mediated by PINK1 and parkin-mediated ubiquitylations of mitochondrial proteins that can be modulated by deubiquitylating enzymes. We also discuss the role of accessory factors regulating mitochondrial fission/fusion and the interplay with pro- and antiapoptotic Bcl-2 family members. Comprehensive knowledge of the processes of mitophagy is essential for the understanding of vital mitochondrial turnover in health and disease.


Assuntos
Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Mitofagia , Transdução de Sinais , Ubiquitinação , Animais , Mitocôndrias/genética , Proteínas Mitocondriais/genética
8.
J Biol Chem ; 295(3): 673-689, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31780563

RESUMO

Insoluble, hyperubiquitylated TAR DNA-binding protein of 43 kDa (TDP-43) in the central nervous system characterizes frontotemporal dementia and ALS in many individuals with these neurodegenerative diseases. The causes for neuropathological TDP-43 aggregation are unknown, but it has been suggested that stress granule (SG) formation is important in this process. Indeed, in human embryonic kidney HEK293E cells, various SG-forming conditions induced very strong TDP-43 ubiquitylation, insolubility, and reduced splicing activity. Osmotic stress-induced SG formation and TDP-43 ubiquitylation occurred rapidly and coincided with colocalization of TDP-43 and SG markers. Washout experiments confirmed the rapid dissolution of SGs, accompanied by normalization of TDP-43 ubiquitylation and solubility. Surprisingly, interference with the SG process using a protein kinase R-like endoplasmic reticulum kinase inhibitor (GSK2606414) or the translation blocker emetine did not prevent TDP-43 ubiquitylation and insolubility. Thus, parallel pathways may lead to pathological TDP-43 modifications independent of SG formation. Using a panel of kinase inhibitors targeting signaling pathways of the osmotic shock inducer sorbitol, we could largely rule out the stress-activated and extracellular signal-regulated protein kinase modules and glycogen synthase kinase 3ß. For arsenite, but not for sorbitol, quenching oxidative stress with N-acetylcysteine did suppress both SG formation and TDP-43 ubiquitylation and insolubility. Thus, sodium arsenite appears to promote SG formation and TDP-43 modifications via oxidative stress, but sorbitol stimulates TDP-43 ubiquitylation and insolubility via a novel pathway(s) independent of SG formation. In conclusion, pathological TDP-43 modifications can be mediated via multiple distinct pathways for which SGs are not essential.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico/genética , Estresse Oxidativo/genética , Ubiquitinação/genética , Acetilcisteína/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteínas de Ligação a DNA/química , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Glicogênio Sintase Quinase 3 beta/genética , Células HEK293 , Proteínas de Choque Térmico/química , Humanos , Indóis/farmacologia , Mutação/efeitos dos fármacos , Pressão Osmótica/efeitos dos fármacos , Agregação Patológica de Proteínas/genética , Transporte Proteico/genética , Transdução de Sinais/efeitos dos fármacos , Solubilidade/efeitos dos fármacos , Sorbitol/farmacologia
9.
FASEB J ; 33(2): 2116-2131, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30252534

RESUMO

The pathophysiology of Parkinson's disease is characterized by the abnormal accumulation of α-synuclein (α-Syn), eventually resulting in the formation of Lewy bodies and neurites in surviving neurons in the brain. Although α-Syn aggregation has been extensively studied in vitro, there is limited in vivo knowledge on α-Syn aggregation. Here, we used the powerful genetics of Drosophila melanogaster and developed an in vivo assay to monitor α-Syn accumulation by using a bimolecular fluorescence complementation assay. We found that both genetic and pharmacologic manipulations affected α-Syn accumulation. Interestingly, we also found that alterations in the cellular protein degradation mechanisms strongly influenced α-Syn accumulation. Administration of compounds identified as risk factors for Parkinson's disease, such as rotenone or heavy metal ions, had only mild or even no impact on α-Syn accumulation in vivo. Finally, we show that increasing phosphorylation of α-Syn at serine 129 enhances the accumulation and toxicity of α-Syn. Altogether, our study establishes a novel model to study α-Syn accumulation and illustrates the complexity of manipulating proteostasis in vivo.-Prasad, V., Wasser, Y., Hans, F., Goswami, A., Katona, I., Outeiro, T. F., Kahle, P. J., Schulz, J. B., Voigt, A. Monitoring α-synuclein multimerization in vivo.


Assuntos
Amiloide/química , Modelos Animais de Doenças , Drosophila melanogaster/metabolismo , Multimerização Proteica , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Animais , Drosophila melanogaster/crescimento & desenvolvimento , Masculino , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Serina , alfa-Sinucleína/genética
10.
Exp Cell Res ; 384(2): 111641, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31550441

RESUMO

Parkin is an ubiquitin ligase regulating mitochondrial quality control reactions, including the autophagic removal of depolarized mitochondria (mitophagy). Parkin-mediated protein ubiquitinations may be counteracted by deubiquitinating enzymes (DUBs). We conducted a high-content imaging screen of Parkin translocation to depolarized mitochondria after siRNA mediated silencing of each DUB in Parkin overexpressing HeLa cells. Knockdown of the ubiquitin-specific protease USP36 led to delayed Parkin translocation while only slightly disturbing the ubiquitination of mitochondrial proteins, but final autophagic elimination of mitochondria was severely disrupted. The localization of the nucleolar USP36 was not altered during mitophagy. However, the marker for transcriptional active chromatin, histone 2B Lys120 mono-ubiquitination was found reduced in USP36-silenced cells undergoing mitophagy. We observed a reduction of the mRNA and protein levels of Beclin-1 and its associated autophagy-related key regulator ATG14L in USP36 knockdown cells. Importantly, transfection of active ATG14L into USP36-silenced cells significantly restored Parkin-dependent mitophagy. We propose USP36 as regulator for the Parkin-dependent mitophagy at least in part via the Beclin-1-ATG14L pathway.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Proteína Beclina-1/genética , Regulação para Baixo/genética , Mitofagia/genética , Ubiquitina Tiolesterase/genética , Ubiquitina-Proteína Ligases/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes/métodos , Células HeLa , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Ubiquitina/genética , Proteases Específicas de Ubiquitina/genética , Ubiquitinação/genética
12.
J Biol Chem ; 293(41): 16083-16099, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30120199

RESUMO

TAR DNA-binding protein of 43 kDa (TDP-43) forms pathological aggregates in neurodegenerative diseases, particularly in certain forms of frontotemporal dementia and amyotrophic lateral sclerosis. Pathological modifications of TDP-43 include proteolytic fragmentation, phosphorylation, and ubiquitinylation. A pathognomonic TDP-43 C-terminal fragment (CTF) spanning amino acids 193-414 contains only four lysine residues that could be potentially ubiquitinylated. Here, serial mutagenesis of these four lysines to arginine revealed that not a single residue is responsible for the ubiquitinylation of mCherry-tagged CTF. Removal of all four lysines was necessary to suppress ubiquitinylation. Interestingly, Lys-408 substitution enhanced the pathological phosphorylation of the immediately adjacent serine residues 409/410 in the context of mCherry-CTF. Thus, Lys-408 ubiquitinylation appears to hinder Ser-409/410 phosphorylation in TDP-43 CTF. However, we did not observe the same effect for full-length TDP-43. We extended the mutagenesis study to full-length TDP-43 and performed MS. Ubiquitinylated lysine residues were identified in the nuclear localization sequence (NLS; Lys-84 and Lys-95) and RNA-binding region (mostly Lys-160, Lys-181, and Lys-263). Mutagenesis of Lys-84 confirmed its importance as the major determinant for nuclear import, whereas Lys-95 mutagenesis did not significantly affect TDP-43's nucleo-cytoplasmic distribution, solubility, aggregation, and RNA-processing activities. Nevertheless, the K95A mutant had significantly reduced Ser-409/410 phosphorylation, emphasizing the suspected interplay between TDP-43 ubiquitinylation and phosphorylation. Collectively, our analysis of TDP-43 ubiquitinylation sites indicates that the NLS residues Lys-84 and Lys-95 have more prominent roles in TDP-43 function than the more C-terminal lysines and suggests a link between specific ubiquitinylation events and pathological TDP-43 phosphorylation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Ubiquitina/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Lisina/química , Mutagênese Sítio-Dirigida , Mutação , Fosforilação , Processamento de Proteína Pós-Traducional , Solubilidade
13.
Nucleic Acids Res ; 45(5): 2797-2808, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-27907896

RESUMO

Site-directed A-to-I RNA editing is a technology for re-programming genetic information at the RNA-level. We describe here the first design of genetically encodable guideRNAs that enable the re-addressing of human ADAR2 toward specific sites in user-defined mRNA targets. Up to 65% editing yield has been achieved in cell culture for the recoding of a premature Stop codon (UAG) into tryptophan (UIG). In the targeted gene, editing was very specific. We applied the technology to recode a recessive loss-of-function mutation in PINK1 (W437X) in HeLa cells and showed functional rescue of PINK1/Parkin-mediated mitophagy, which is linked to the etiology of Parkinson's disease. In contrast to other editing strategies, this approach requires no artificial protein. Our novel guideRNAs may allow for the development of a platform technology that requires only the administration or expression of a guideRNA to recode genetic information, with high potential for application in biology and medicine.


Assuntos
Adenosina Desaminase/metabolismo , Mitofagia , Mutação Puntual , Proteínas Quinases/genética , Edição de RNA , Proteínas de Ligação a RNA/metabolismo , Códon sem Sentido , Genoma , Células HEK293 , Células HeLa , Humanos , RNA Guia de Cinetoplastídeos/química , RNA Mensageiro/metabolismo , Transfecção
14.
Biochim Biophys Acta Mol Cell Res ; 1864(12): 2356-2368, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28888991

RESUMO

Leucine-rich repeat kinase 2 (LRRK2), a multi-domain protein, is a key causative factor in Parkinson's disease (PD). Identification of novel substrates and the molecular mechanisms underlying the effects of LRRK2 are essential for understanding the pathogenesis of PD. In this study, we showed that LRRK2 played an important role in neuronal cell death by directly phosphorylating and activating apoptosis signal-regulating kinase 1 (ASK1). LRRK2 phosphorylated ASK1 at Thr832 that is adjacent to Thr845, which serves as an autophosphorylation site. Moreover, results of binding and kinase assays showed that LRRK2 acted as a scaffolding protein by interacting with each components of the ASK1-MKK3/6-p38 MAPK pathway through its specific domains and increasing the proximity to downstream targets. Furthermore, LRRK2-induced apoptosis was suppressed by ASK1 inhibition in neuronal stem cells derived from patients with PD. These results clearly indicate that LRRK2 acts as an upstream kinase in the ASK1 pathway and plays an important role in the pathogenesis of PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , MAP Quinase Quinase Quinase 5/genética , Neurônios/metabolismo , Doença de Parkinson/genética , Apoptose/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Neurônios/patologia , Doença de Parkinson/patologia , Fosforilação , Transdução de Sinais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
15.
Cell Tissue Res ; 373(1): 183-193, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29185072

RESUMO

The abnormal accumulation of α-synuclein aggregates in neurons, nerve fibers, or glial cells is the hallmark of a group of neurodegenerative diseases known collectively as α-synucleinopathies. Clinical, neuropathological, and experimental evidence strongly suggests that α-synuclein plays a role not only as a trigger of pathological processes at disease inception, but also as a mediator of pathological spreading during disease progression. Specific properties of α-synuclein, such as its ability to pass from one neuron to another, its tendency to aggregate, and its potential to generate self-propagating species, have been described and elucidated in animal models and may contribute to the relentless exacerbation of Parkinson's disease pathology in patients. Animal models used for studying α-synuclein accumulation, aggregation, and propagation are mostly based on three approaches: (1) intra-parenchymal inoculations of exogenous α-synuclein (e.g., synthetic α-synuclein fibrils), (2) transgenic mice, and (3) animals (mice or rats) in which α-synuclein overexpression is induced by viral vector injections. Whereas pathological α-synuclein changes are consistently observed in these models, important differences are also found. In particular, pronounced pathology in transgenic mice and viral vector-injected animals does not appear to involve self-propagating α-synuclein species. A critical discussion of these models reveals their strengths and limitations and provides the basis for recommendations concerning their use for future investigations.


Assuntos
alfa-Sinucleína/metabolismo , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Vetores Genéticos/metabolismo , Humanos
16.
J Neurochem ; 143(3): 294-305, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28833174

RESUMO

α-Synuclein (αSYN) is the neuropathological hallmark protein of Parkinson's disease (PD) and related neurodegenerative disorders. Moreover, the gene encoding αSYN (SNCA) is a major genetic contributor to PD. Interestingly, independent genome-wide association studies also identified SNCA as the most important candidate gene for alcoholism. Furthermore, single-nucleotide-polymorphisms have been associated with alcohol-craving behavior and alcohol-craving patients showed augmented αSYN expression in blood. To investigate the effect of αSYN on the addictive properties of chronic alcohol use, we examined consumption, motivation, and seeking responses induced by environmental stimuli and relapse behavior in transgenic mice expressing the human mutant [A30P]αSYN throughout the brain. The primary reinforcing effects of alcohol under operant self-administration conditions were increased, while consumption and the alcohol deprivation effect were not altered in the transgenic mice. The same mice were subjected to immunohistochemical measurements of immediate-early gene inductions in brain regions involved in addiction-related behaviors. Acute ethanol injection enhanced immunostaining for the phosphorylated form of cAMP response element binding protein in both amygdala and nucleus accumbens of αSYN transgenic mice, while in wild-type mice no effect was visible. However, at the same time, levels of cFos remain unchanged in both genotypes. These results provide experimental confirmation of SNCA as a candidate gene for alcoholism in addition to its known link to PD.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Motivação/efeitos dos fármacos , Motivação/genética , alfa-Sinucleína/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Depressores do Sistema Nervoso Central/sangue , Comportamento de Escolha/efeitos dos fármacos , Sinais (Psicologia) , Comportamento de Procura de Droga/efeitos dos fármacos , Etanol/sangue , Extinção Psicológica/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Locomoção/efeitos dos fármacos , Locomoção/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Autoadministração , Paladar/efeitos dos fármacos , Paladar/genética , alfa-Sinucleína/genética
17.
Cell Mol Neurobiol ; 37(7): 1217-1226, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28028735

RESUMO

Aggregated alpha-synuclein is the main component of Lewy bodies, intraneuronal deposits observed in Parkinson's disease and dementia with Lewy bodies. The objective of the study was to identify surface-exposed epitopes of alpha-synuclein in vitro and in vivo formed aggregates. Polyclonal immunoglobulin Y antibodies were raised against short linear peptides of the alpha-synuclein molecule. An epitope in the N-terminal region (1-10) and all C-terminal epitopes (90-140) were found to be exposed in an indirect enzyme-linked immunosorbent assay (ELISA) using recombinant monomeric, oligomeric, and fibrillar alpha-synuclein. In a phospholipid ELISA, the N-terminus and mid-region of alpha-synuclein (i.e., 1-90) were associated with phosphatidylserine and thus occluded from antibody binding. The antibodies that reacted most strongly with epitopes in the in vitro aggregates (i.e., 1-10 and epitopes between positions 90-140) also labeled alpha-synuclein inclusions in brains from transgenic (Thy-1)-h[A30P] alpha-synuclein mice and Lewy bodies and Lewy neurites in brains of patients with alpha-synucleinopathies. However, differences in reactivity were observed with the C-terminal antibodies when brain tissue from human and transgenic mice was compared. Taken together, the study shows that although similar epitopes are exposed in both in vitro and in vivo formed alpha-synuclein inclusions, structural heterogeneity can be observed between different molecular species.


Assuntos
Mapeamento Cromossômico/métodos , Epitopos/genética , Epitopos/metabolismo , Agregados Proteicos/fisiologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade
18.
Proc Natl Acad Sci U S A ; 111(31): 11377-82, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049393

RESUMO

We provide evidence that S6 kinase 1 (S6K1) Aly/REF-like target (SKAR) is engaged in IFN-α signaling and plays a key role in the generation of IFN responses. Our data demonstrate that IFN-α induces phosphorylation of SKAR, which is mediated by either the p90 ribosomal protein S6 kinase (RSK) or p70 S6 kinase (S6K1), in a cell type-specific manner. This type I IFN-inducible phosphorylation of SKAR results in enhanced interaction with the eukaryotic initiation factor (eIF)4G and recruitment of activated RSK1 to 5' cap mRNA. Our studies also establish that SKAR is present in cap-binding CBP80 immune complexes and that this interaction is mediated by eIF4G. We demonstrate that inducible protein expression of key IFN-α-regulated protein products such as ISG15 and p21(WAF1/CIP1) requires SKAR activity. Importantly, our studies define a requirement for SKAR in the generation of IFN-α-dependent inhibitory effects on malignant hematopoietic progenitors from patients with chronic myeloid leukemia or myeloproliferative neoplasms. Taken altogether, these findings establish critical and essential roles for SKAR in the regulation of mRNA translation of IFN-sensitive genes and induction of IFN-α biological responses.


Assuntos
Interferon-alfa/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citocinas/metabolismo , Guanosina/análogos & derivados , Guanosina/metabolismo , Humanos , Camundongos , Complexo Proteico Nuclear de Ligação ao Cap/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquitinas/metabolismo
19.
Hum Mol Genet ; 23(15): 3975-89, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24619358

RESUMO

Lewy bodies, a pathological hallmark of Parkinson's disease (PD), contain aggregated alpha-synuclein (αSyn), which is found in several modified forms and can be discovered phosphorylated, ubiquitinated and truncated. Aggregation-prone truncated species of αSyn caused by aberrant cleavage of this fibrillogenic protein are hypothesized to participate in its sequestration into inclusions subsequently leading to synaptic dysfunction and neuronal death. Here, we investigated the role of calpain cleavage of αSyn in vivo by generating two opposing mouse models. We crossed into human [A30P]αSyn transgenic (i) mice deficient for calpastatin, a calpain-specific inhibitor, thus enhancing calpain activity (SynCAST(-)) and (ii) mice overexpressing human calpastatin leading to reduced calpain activity (SynCAST(+)). As anticipated, a reduced calpain activity led to a decreased number of αSyn-positive aggregates, whereas loss of calpastatin led to increased truncation of αSyn in SynCAST(-). Furthermore, overexpression of calpastatin decreased astrogliosis and the calpain-dependent degradation of synaptic proteins, potentially ameliorating the observed neuropathology in [A30P]αSyn and SynCAST(+) mice. Overall, our data further support a crucial role of calpains, particularly of calpain 1, in the pathogenesis of PD and in disease-associated aggregation of αSyn, indicating a therapeutic potential of calpain inhibition in PD.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Calpaína/genética , Doença de Parkinson/genética , Agregação Patológica de Proteínas/genética , alfa-Sinucleína/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Calpaína/antagonistas & inibidores , Calpaína/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Proteólise , Transdução de Sinais , Sinapses/metabolismo , Sinapses/patologia , alfa-Sinucleína/metabolismo
20.
Hum Mol Genet ; 23(3): 767-81, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24064336

RESUMO

Lewy bodies and neurites are the pathological hallmark of Parkinson's disease. These structures are composed of fibrillized and ubiquitinated alpha-synuclein suggesting that impaired protein clearance is an important event in aggregate formation. The A30P mutation is known for its fast oligomerization, but slow fibrillization rate. Despite its toxicity to neurons, mechanisms involved in either clearance or conversion of A30P alpha-synuclein from its soluble state into insoluble fibrils and their effects in vivo are poorly understood. Synphilin-1 is present in Lewy bodies, interacting with alpha-synuclein in vivo and in vitro and promotes its sequestration into aggresomes, which are thought to act as cytoprotective agents facilitating protein degradation. We therefore crossed animals overexpressing A30P alpha-synuclein with synphilin-1 transgenic mice to analyze its impact on aggregation, protein clearance and phenotype progression. We observed that co-expression of synphilin-1 mildly delayed the motor phenotype caused by A30P alpha-synuclein. Additionally, the presence of N- and C-terminal truncated alpha-synuclein species and fibrils were strongly reduced in double-transgenic mice when compared with single-transgenic A30P mice. Insolubility of mutant A30P and formation of aggresomes was still detectable in aged double-transgenic mice, paralleled by an increase of ubiquitinated proteins and high autophagic activity. Hence, this study supports the notion that co-expression of synphilin-1 promotes formation of autophagic-susceptible aggresomes and consecutively the degradation of human A30P alpha-synuclein. Notably, although synphilin-1 overexpression significantly reduced formation of fibrils and astrogliosis in aged animals, a similar phenotype is present in single- and double-transgenic mice suggesting additional neurotoxic processes in disease progression.


Assuntos
Proteínas de Transporte/genética , Proteínas do Tecido Nervoso/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Envelhecimento , Animais , Autofagia/fisiologia , Benzotiazóis , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Transporte/metabolismo , Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/genética , Dobramento de Proteína , Solubilidade , Tiazóis/metabolismo , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA