RESUMO
Pollination and seed dispersal of plants by animals are key mutualistic processes for the conservation of plant diversity and ecosystem functioning. Although different animals frequently act as pollinators or seed dispersers, some species can provide both functions, so-called 'double mutualists', suggesting that the evolution of pollination and seed dispersal may be linked. Here, we assess the macroevolution of mutualistic behaviours in lizards (Lacertilia) by applying comparative methods to a phylogeny comprising 2,838 species. We found that both flower visitation (potential pollination; recorded in 64 species [2.3% of total] across 9 families) and seed dispersal (recorded in 382 species [13,5% of total] across 26 families) have evolved repeatedly in Lacertilia. Furthermore, we found that seed dispersal activity pre-dated flower visitation and that the evolution of seed dispersal activity and flower visitation was correlated, illustrating a potential evolutionary mechanism behind the emergence of double mutualisms. Finally, we provide evidence that lineages with flower visitation or seed dispersal activity have higher diversification rates than lineages lacking these behaviours. Our study illustrates the repeated innovation of (double) mutualisms across Lacertilia and we argue that island settings may provide the ecological conditions under which (double) mutualisms persist over macroevolutionary timescales.
Assuntos
Lagartos , Dispersão de Sementes , Animais , Ecossistema , Lagartos/genética , Filogenia , Plantas , Sementes , Polinização , Simbiose/genéticaRESUMO
Plant-pollinator interactions are often highly specialised, which may be a consequence of co-evolution. Yet when plants and pollinators co-evolve, it is not clear if this will also result in frequent cospeciation. Here, we investigate the mutual evolutionary history of South African oil-collecting Rediviva bees and their Diascia host plants, in which the elongated forelegs of female Rediviva have been suggested to coevolve with the oil-producing spurs of their Diascia hosts. After controlling for phylogenetic nonindependence, we found Rediviva foreleg length to be significantly correlated with Diascia spur length, suggestive of co-evolution. However, as trait correlation could also be due to pollinator shifts, we tested if cospeciation or pollinator shifts have dominated the evolution of Rediviva-Diascia interactions by analysing phylogenies in a cophylogenetic framework. Distance-based cophylogenetic analyses (PARAFIT, PACo) indicated significant congruence of the two phylogenies under most conditions. Yet, we found that phylogenetic relatedness was correlated with ecological similarity (the spectrum of partners that each taxon interacted with) only for Diascia but not for Rediviva, suggesting that phylogenetic congruence might be due to phylogenetic tracking by Diascia of Rediviva rather than strict (reciprocal) co-evolution. Furthermore, event-based reconciliation using a parsimony approach (CORE-PA) on average revealed only 11-13 cospeciation events but 58-80 pollinator shifts. Probabilistic cophylogenetic analyses (COALA) supported this trend (8-29 cospeciations vs. 40 pollinator shifts). Our study suggests that diversification of Diascia has been largely driven by Rediviva (phylogenetic tracking, pollinator shifts) but not vice versa. Moreover, our data suggest that, even in co-evolving mutualisms, cospeciation events might occur only infrequently.
Assuntos
Abelhas/genética , Evolução Biológica , Especiação Genética , Interações Hospedeiro-Parasita/genética , Polinização/fisiologia , Scrophulariaceae/parasitologia , Animais , Filogenia , Característica Quantitativa HerdávelRESUMO
Adaptation to local host plants may impact a pollinator's population genetic structure by reducing gene flow and driving population genetic differentiation, representing an early stage of ecological speciation. South African Rediviva longimanus bees exhibit elongated forelegs, a bizarre adaptation for collecting oil from floral spurs of their Diascia hosts. Furthermore, R. longimanus foreleg length (FLL) differs significantly among populations, which has been hypothesised to result from selection imposed by inter-population variation in Diascia floral spur length. Here, we used a pooled restriction site-associated DNA sequencing (pooled RAD-seq) approach to investigate the population genetic structure of R. longimanus and to test if phenotypic differences in FLL translate into increased genetic differentiation (i) between R. longimanus populations and (ii) between phenotypes across populations. We also inferred the effects of demographic processes on population genetic structure and tested for genetic markers underpinning local adaptation. RESULTS: Populations showed marked genetic differentiation (average FST = 0.165), though differentiation was not statistically associated with differences between populations in FLL. All populations exhibited very low genetic diversity and were inferred to have gone through recent bottleneck events, suggesting extremely low effective population sizes. Genetic differentiation between samples pooled by leg length (short versus long) rather than by population of origin was even higher (FST = 0.260) than between populations, suggesting reduced interbreeding between long and short-legged individuals. Signatures of selection were detected in 1119 (3.8%) of a total of 29,721 SNP markers, CONCLUSIONS: Populations of R. longimanus appear to be small, bottlenecked and isolated. Though we could not detect the effect of local adaptation (FLL in response to floral spurs of host plants) on population genetic differentiation, short and long legged bees appeared to be partially differentiated, suggesting incipient ecological speciation. To test this hypothesis, greater resolution through the use of individual-based whole-genome analyses is now needed to quantify the degree of reproductive isolation between long and short legged bees between and even within populations.
Assuntos
Abelhas/genética , Genética Populacional , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Marcadores Genéticos , Genoma de Inseto , Geografia , Polimorfismo de Nucleotídeo Único/genética , África do SulRESUMO
Urbanization is considered a global threat to biodiversity; the growth of cities results in an increase in impervious surfaces, soil and air pollution, fragmentation of natural vegetation and invasion of non-native species, along with numerous environmental changes, including the heat island phenomenon. The combination of these effects constitutes a challenge for both the survival and persistence of many native species, while also imposing altered selective regimes. Here, using 110 314 single nucleotide polymorphisms generated by restriction-site-associated DNA sequencing, we investigated the genome-wide effects of urbanization on putative neutral and adaptive genomic diversity in a major insect pollinator, Bombus lapidarius, collected from nine German cities and nine paired rural sites. Overall, genetic differentiation among sites was low and there was no obvious genome-wide genetic structuring, suggesting the absence of strong effects of urbanization on gene flow. We nevertheless identified several loci under directional selection, a subset of which was associated with urban land use, including the percentage of impervious surface surrounding each sampling site. Overall, our results provide evidence of local adaptation to urbanization in the face of gene flow in a highly mobile insect pollinator.
Assuntos
Adaptação Biológica , Abelhas/genética , Meio Ambiente , Polimorfismo de Nucleotídeo Único , Animais , Cidades , Estudo de Associação Genômica Ampla , Alemanha , Polinização , Mapeamento por Restrição , UrbanizaçãoRESUMO
Adaptation is evolution in response to natural selection. Hence, an adaptation is expected to originate simultaneously with the acquisition of a particular selective environment. Here we test whether long legs evolve in oil-collecting Rediviva bees when they come under selection by long-spurred, oil-secreting flowers. To quantify the selective environment, we drew a large network of the interactions between Rediviva species and oil-secreting plant species. The selective environment of each bee species was summarized as the average spur length of the interacting plant species weighted by interaction frequency. Using phylogenetically independent contrasts, we calculated divergence in selective environment and evolutionary divergence in leg length between sister species (and sister clades) of Rediviva We found that change in the selective environment explained 80% of evolutionary change in leg length, with change in body size contributing an additional 6% of uniquely explained variance. The result is one of four proposed steps in testing for plant-pollinator coevolution.
Assuntos
Adaptação Biológica , Abelhas/genética , Coevolução Biológica , Estruturas Animais/anatomia & histologia , Animais , Abelhas/anatomia & histologia , Tamanho Corporal , Flores , Polinização , Seleção GenéticaRESUMO
Despite close ecological interactions between plants and their pollinators, only some highly specialised pollinators adapt to a specific host plant trait by evolving a bizarre morphology. Here we investigated the evolution of extremely elongated forelegs in females of the South African bee genus Rediviva (Hymenoptera: Melittidae), in which long forelegs are hypothesised to be an adaptation for collecting oils from the extended spurs of their Diascia host flowers. We first reconstructed the phylogeny of the genus Rediviva using seven genes and inferred an origin of Rediviva at around 29MYA (95% HPD=19.2-40.5), concurrent with the origin and radiation of the Succulent Karoo flora. The common ancestor of Rediviva was inferred to be a short-legged species that did not visit Diascia. Interestingly, all our analyses strongly supported at least two independent origins of long legs within Rediviva. Leg length was not correlated with any variable we tested (ecological specialisation, Diascia visitation, geographic distribution, pilosity type) but seems to have evolved very rapidly. Overall, our results indicate that foreleg length is an evolutionary highly labile, rapidly evolving trait that might enable Rediviva bees to respond quickly to changing floral resource availability.
Assuntos
Abelhas/classificação , Membro Posterior/fisiologia , Animais , Evolução Biológica , Complexo IV da Cadeia de Transporte de Elétrons/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Membro Posterior/anatomia & histologia , Fenótipo , Filogenia , RNA Polimerase II/classificação , RNA Polimerase II/genética , RNA Ribossômico 28S/classificação , RNA Ribossômico 28S/genéticaRESUMO
Bees and flowering plants are two closely interacting groups of organisms. Habitat loss and fragmentation associated with urbanisation are major threats to both partners. Yet how and why bee and floral richness and diversity co-vary within the urban landscape remain unclear. Here, we sampled bees and flowering plants in urban green spaces to investigate how bee and flowering plant species richness, their phylogenetic diversity and pollination-relevant functional trait diversity influence each other in response to urban fragmentation. As expected, bee abundance and richness were positively related to flowering plant richness, with bee body size (but not bee richness and diversity) increasing with nectar-holder depth of flowering plants. Causal modelling indicated that bottom-up effects dictated patterns of bee-flower relationships, with urban fragmentation diminishing flowering plants richness and thereby indirectly reducing bee species richness and abundance. The close relationship between bees and flowering plants highlights the risks of their parallel declines in response to land-use change within the urban landscape.
Assuntos
Abelhas/fisiologia , Biodiversidade , Planejamento de Cidades , Ecossistema , Magnoliopsida/genética , Magnoliopsida/fisiologia , Fenômenos Fisiológicos Vegetais , Urbanização , Animais , Abelhas/genética , Filogenia , Polinização , RiscoRESUMO
Urbanisation is an important global driver of biodiversity change, negatively impacting some species groups whilst providing opportunities for others. Yet its impact on ecosystem services is poorly investigated. Here, using a replicated experimental design, we test how Central European cities impact flying insects and the ecosystem service of pollination. City sites have lower insect species richness, particularly of Diptera and Lepidoptera, than neighbouring rural sites. In contrast, Hymenoptera, especially bees, show higher species richness and flower visitation rates in cities, where our experimentally derived measure of pollination is correspondingly higher. As well as revealing facets of biodiversity (e.g. phylogenetic diversity) that correlate well with pollination, we also find that ecotones in insect-friendly green cover surrounding both urban and rural sites boost pollination. Appropriately managed cities could enhance the conservation of Hymenoptera and thereby act as hotspots for pollination services that bees provide to wild flowers and crops grown in urban settings.