Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomater Sci ; 11(18): 6287-6298, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37551433

RESUMO

An efficient nanoparticulate drug carrier intended for chemotherapy based on intravenous administration must exhibit a long enough blood circulation time, a good penetrability into the tumour volume, as well as an efficient uptake by cancer cells. Limiting factors for the therapeutic outcome in vivo are recognition of the nanoparticles as foreign objects, which triggers nanoparticle uptake by defence organs rich in macrophages, e.g. liver and spleen, on the time-scale of accumulation and uptake in/by the tumour. However, the development of nanomedicine towards efficient nanoparticle-based delivery to solid tumours is hampered by the lack of simple, reproducible, cheap, and predictive means for early identification of promising nanoparticle formulations. The surface chemistry of nanoparticles is known to be the most important determinant for the biological fate of nanoparticles, as it influences the extent of serum protein adsorption, and also the relative composition of the protein corona. Here we preliminarily evaluate an extremely simple screening method for nanoparticle surface chemistry pre-optimization based on nanoparticle uptake in vitro by PC-3 cancer cells and THP-1 macrophages. Only when both selectivity for the cancer cells as well as the extent of nanoparticle uptake are taken into consideration do the in vitro results mirror literature results obtained for small animal models. Furthermore, although not investigated here, the screening method does also lend itself to the study of actively targeted nanoparticles.


Assuntos
Nanopartículas , Neoplasias , Coroa de Proteína , Animais , Neoplasias/tratamento farmacológico , Nanopartículas/química , Portadores de Fármacos , Proteínas Sanguíneas/química , Fígado/metabolismo , Coroa de Proteína/química
2.
medRxiv ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37546840

RESUMO

Background: Leukocyte progenitors derived from clonal hematopoiesis of undetermined potential (CHIP) are associated with increased cardiovascular events. However, the prevalence and functional relevance of CHIP in coronary artery disease (CAD) are unclear, and cells affected by CHIP have not been detected in human atherosclerotic plaques. Methods: CHIP mutations in blood and tissues were identified by targeted deep-DNA-sequencing (DNAseq: coverage >3,000) and whole-genome-sequencing (WGS: coverage >35). CHIP-mutated leukocytes were visualized in human atherosclerotic plaques by mutaFISH™. Functional relevance of CHIP mutations was studied by RNAseq. Results: DNAseq of whole blood from 540 deceased CAD patients of the Munich cardIovaScular StudIes biObaNk (MISSION) identified 253 (46.9%) CHIP mutation carriers (mean age 78.3 years). DNAseq on myocardium, atherosclerotic coronary and carotid arteries detected identical CHIP mutations in 18 out of 25 mutation carriers in tissue DNA. MutaFISH™ visualized individual macrophages carrying DNMT3A CHIP mutations in human atherosclerotic plaques. Studying monocyte-derived macrophages from Stockholm-Tartu Atherosclerosis Reverse Networks Engineering Task (STARNET; n=941) by WGS revealed CHIP mutations in 14.2% (mean age 67.1 years). RNAseq of these macrophages revealed that expression patterns in CHIP mutation carriers differed substantially from those of non-carriers. Moreover, patterns were different depending on the underlying mutations, e.g. those carrying TET2 mutations predominantly displayed upregulated inflammatory signaling whereas ASXL1 mutations showed stronger effects on metabolic pathways. Conclusions: Deep-DNA-sequencing reveals a high prevalence of CHIP mutations in whole blood of CAD patients. CHIP-affected leukocytes invade plaques in human coronary arteries. RNAseq data obtained from macrophages of CHIP-affected patients suggest that pro-atherosclerotic signaling differs depending on the underlying mutations. Further studies are necessary to understand whether specific pathways affected by CHIP mutations may be targeted for personalized treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA