Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Dev Sustain ; 23(7): 10623-10645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33230388

RESUMO

In the first part, this work reports that during the global "anthropopause" period, that was imposed in March and April 2020 for limiting the spread of COVID-19, the concentrations of basic air pollutants over Europe were reduced by up to 70%. During May and June, the gradual lift of the stringent measures resulted in the recovery of these reductions with pollution concentrations approaching the levels before the lockdown by the end of June 2020. In the second part, this work examines the alleged correlations between the reported cases of COVID-19 and temperature, humidity and particulate matter for March and April 2020 in Europe. It was found that decreasing temperatures and relative humidity with increasing concentrations of particulate matter are correlated with an increase in the number of reported cases during these 2 months. However, when these calculations were repeated for May and June, we found a remarkable drop in the significance of the correlations which leads us to question the generally accepted inverse relation between pandemics and air temperature at least during the warmer months. Such a relationship could not be supported in our study for SARS-CoV-2 virus and the question remains open. In the third and last part of this work, we examine the question referring to the origin of pandemics. In this context we have examined the hypothesis that the observed climate warming in Siberia and the Arctic and the thawing of permafrost could result to the release of trapped in the permafrost pathogens in the atmosphere. We find that although such relations cannot be directly justified, they present a possible horrifying mechanism for the origin of viruses in the future during the developing global warming of our planet in the decades to come. Overall the findings of our study indicate that: (1) the reduction of anthropogenic emissions in Europe during the "anthropopause" period of March and April 2020 was significant, but when the lockdown measures were raised the concentrations of atmospheric pollutants quickly recovered to pre-pandemic levels and therefore any possible climatic feedbacks were negligible; (2) no robust relationship between atmospheric parameters and the spread of COVID-19 cases can be justified in the warmer part of the year and (3) more research needs to be done regarding the possible links between climate change and the release of new pathogens from thawing of permafrost areas.

2.
Sci Total Environ ; 476-477: 677-87, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24508856

RESUMO

More than sixteen years (1997-2013) of continuous ozone concentrations at the rural Agia Marina (EMEP, 532 ma.s.l.) station in Cyprus, together with a number of ancillary chemical and meteorological parameters have been analyzed on a multiannual, annual and diurnal basis. The observations reveal a) the presence of a prominent seasonality with maxima observed during summer (54±5 ppbv) and the minima in winter (39±3 ppbv) b) a relatively small diurnal variability with the noon levels (50±9 ppbv) being higher by ~4 pbbv compared to nighttime (46±9 ppbv) and c) a non-significant upward trend over the 16 years of 0.11±0.12 ppbv y(-1). To assess the spatial variability over Cyprus, simultaneous measurements in 2011-2012 have been performed at Inia, Stavrovouni and Cavo Greco, three remote marine monitoring sites located to the west, central and the east of the Island, respectively. Our results show that ambient ozone levels over Cyprus are mostly influenced by regional/transported ozone while the local precursor emissions play a minor role in ozone formation. On an annual basis a net ozone reduction of 1.5 and 1.0 ppbv occurs when the air masses originate from northerly and westerly directions, respectively, while this is 2.4 ppbv during southerly wind. This suggests continuous net ozone loss controlled by surface deposition and photochemical destruction, and highlights the importance of long-range transport in controlling ozone levels in Cyprus.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Ozônio/análise , Chipre , Monitoramento Ambiental , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA