Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 414(1): 623-637, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34347113

RESUMO

Glycosylation is a ubiquitous co- and post-translational modification involved in the sorting, folding, and trafficking of proteins in biological systems; in humans, >50% of gene products are glycosylated with the cellular machinery of glycosylation compromising ~2% of the genome. Perturbations in glycosylation have been implicated in a variety of diseases including neurodegenerative diseases and certain types of cancer. However, understanding the relationship between a glycan and its biological role is often difficult due to the numerous glycan isomers that exist. To address this challenge, nanoflow liquid chromatography, ion mobility spectrometry, and mass spectrometry (nLC-IMS-MS) were combined with the Individuality Normalization when Labeling with the Isotopic Glycan Hydrazide Tags (INLIGHT™) strategy to study a series of glycan standards and those enzymatically released from the glycoproteins horseradish peroxidase, fetuin, and pooled human plasma. The combination of IMS and the natural (NAT) and stable-isotope label (SIL) in the INLIGHT™ strategy provided additional confidence for each glycan identification due to the mobility aligned NAT- and SIL-labeled glycans and further capabilities for isomer examinations. Additionally, molecular trend lines based on the IMS and MS dimensions were investigated for the INLIGHT™ derivatized glycans, facilitating rapid identification of putative glycans in complex biological samples.


Assuntos
Espectrometria de Mobilidade Iônica , Polissacarídeos , Cromatografia Líquida , Glicômica/métodos , Glicosilação , Humanos , Espectrometria de Massas/métodos , Polissacarídeos/análise
2.
J Proteome Res ; 20(4): 1855-1863, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33417767

RESUMO

Glycans are responsible for many biological activities; however, their structures are incredibly diverse and complex, often rendering the field of glycomics unsolvable by a single analytical technique. The development of multiple chemical derivatization strategies and bioinformatic software is responsible for some of the greatest analytical gains in the field of glycomics. The INLIGHT strategy is a chemical derivatization technique using hydrazide chemistry to derivatize the reducing end of N-linked glycans and incorporates either a natural (NAT, 12C6) or a stable-isotope label (SIL, 13C6) to carry out relative quantification. Here we present GlycoHunter, a user-friendly software created in MATLAB that enables researchers to accurately and efficiently process MS1 glycomics data where a NAT and SIL pair is generated for relative quantification, including but not limited to, INLIGHT. GlycoHunter accepts the commonly used data file formats imzML and mzXML and effectively identifies all peak pairs associated with NAT- and SIL-labeled N-linked glycans using MS1 data. It also includes the ability to tailor the search parameters and export the results for further analysis using Skyline or Excel.


Assuntos
Glicômica , Polissacarídeos , Biologia Computacional , Software
3.
J Proteome Res ; 19(9): 3761-3768, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32692924

RESUMO

Magnaporthe oryzae (M. oryzae) is a pathogenic, filamentous fungus that is a primary cause of rice blast disease. The M. oryzae protein MGG_13065, SCF E3 ubiquitin ligase complex F-box protein, has been identified as playing a crucial role in the infection process, specifically, as part of the ubiquitin mediated proteolysis pathway. Proteins targeted by MGG_13065 E3 ligase are first phosphorylated and then ubiquitinated by E3 ligase. In this study, we used a label-free quantitative global proteomics technique to probe the role of ubiquitination and phosphorylation in the mechanism of how E3 ligase regulates change in virulence of M. oryzae. To do this, we compared the WT M. oryzae 70-15 strain with a gene knock out (E3 ligase KO) strain. After applying a ≥ 5 normalized spectral count cutoff, a total of 4432 unique proteins were identified comprised of 4360 and 4372 in the WT and E3 ligase KO samples, respectively. Eighty proteins drastically increased in abundance, while 65 proteins decreased in abundance in the E3 ligase KO strain. Proteins (59) were identified only in the WT strain; 13 of these proteins had both phosphorylation and ubiquitination post-translational modifications. Proteins (71) were revealed to be only in the E3 ligase KO strain; 23 of the proteins have both phosphorylation and ubiquitination post-translational modifications. Several of these proteins were associated with key biological processes. These data greatly assist in the selection of future genes for functional studies and enable mechanistic insight related to virulence.


Assuntos
Proteínas F-Box , Proteínas Fúngicas/genética , Magnaporthe , Ubiquitina-Proteína Ligases/genética , Ascomicetos , Proteínas F-Box/genética , Magnaporthe/metabolismo , Proteômica
4.
Anal Bioanal Chem ; 412(1): 139-147, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31760448

RESUMO

Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging is a useful tool for identifying important meta-metabolomic features pertinent for enhancing our understanding of biological systems. Magnaporthe oryzae (M. oryzae) is a filamentous fungus that is the primary cause of rice blast disease. True to its name, M. oryzae primarily destroys rice crops and can also destroy other cereal crops as well. In a previous study, the F-box E3 ligase protein in M. oryzae was noted to be crucial for its growth and pathogenicity. In this study, we inoculated three separate sets of barley with wild-type M. oryzae, an F-box E3 ligase protein knock out of M. oryzae, and a control solution. Over the course of the infection (8 days), we imaged each treatment after development of an advanced polarity switching method, which allowed for the detection of low and high molecular weight compounds that ionize in positive or negative polarities. A set of features from initial experiments were chosen for another analysis using tandem mass spectrometry. Serotonin, a barley defense metabolite, was a compound identified in both positive and negative modes. Serotonin was putatively identified using MS1 data including carbon estimation and sulfur counting then confirmed based on tandem mass spectrometry fragmentation patterns. Metabolites in the melanin pathway, important for infection development of M. oryzae, were also identified using MS1 data but were unable to be confirmed with MS/MS due to their low abundances.


Assuntos
Hordeum/microbiologia , Interações Hospedeiro-Patógeno , Magnaporthe/fisiologia , Metabolômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Hordeum/metabolismo , Raios Infravermelhos , Magnaporthe/metabolismo
5.
Anal Bioanal Chem ; 412(27): 7569-7579, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32844281

RESUMO

The analysis of N-linked glycans using liquid chromatography and mass spectrometry (LC-MS) presents significant challenges, particularly owing to their hydrophilic nature. To address these difficulties, a variety of derivatization methods have been developed to facilitate improved ionization and detection sensitivity. One such method, the Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT)™ strategy for labeling glycans, has previously been utilized in the analysis of N- and O-linked glycans in biological samples. To assess the maximum sensitivity and separability of the INLIGHT™ preparation and analysis pipeline, several critical steps were investigated. First, recombinant and nonrecombinant sources of PNGase F were compared to assess variations in the released glycans. Second, modifications in the INLIGHT™ derivatization step were evaluated including temperature optimization, solvent composition changes, reaction condition length and tag concentration. Optimization of the modified method resulted in 20-100 times greater peak areas for the detected N-linked glycans in fetuin and horseradish peroxidase compared with the standard method. Furthermore, the identification of low-abundance glycans, such as (Fuc)1(Gal)2(GlcNAc)4(Man)3(NeuAc)1 and (Gal)3(GlcNAc)5(Man)3(NeuAc)3, was possible. Finally, the optimal LC setup for the INLIGHT™ derivatized N-linked glycan analyses was found to be a C18 reverse-phase (RP) column with mobile phases typical of RPLC.


Assuntos
Glicômica/métodos , Polissacarídeos/análise , Cromatografia de Fase Reversa/métodos , Feminino , Fetuínas/química , Glicosilação , Humanos , Masculino , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA