RESUMO
OBJECTIVE: While the role of hedgehog (Hh) signaling in promoting zonal fibrocartilage production during development is well-established, whether this pathway can be leveraged to improve tendon-to-bone repair in adults is unknown. Our objective was to genetically and pharmacologically stimulate the Hh pathway in cells that give rise to zonal fibrocartilaginous attachments to promote tendon-to-bone integration. DESIGN: Hh signaling was stimulated genetically via constitutive Smo (SmoM2 construct) activation of bone marrow stromal cells or pharmacologically via systemic agonist delivery to mice following anterior cruciate ligament reconstruction (ACLR). To assess tunnel integration, we measured mineralized fibrocartilage (MFC) formation in these mice 28 days post-surgery and performed tunnel pullout testing. RESULTS: Hh pathway-related genes increased in cells forming the zonal attachments in wild-type mice. Both genetic and pharmacologic stimulation of the Hh pathway increased MFC formation and integration strength 28 days post-surgery. We next conducted studies to define the role of Hh in specific stages of the tunnel integration process. We found Hh agonist treatment increased the proliferation of the progenitor pool in the first week post-surgery. Additionally, genetic stimulation led to continued MFC production in the later stages of the integration process. These results indicate that Hh signaling plays an important biphasic role in cell proliferation and differentiation towards fibrochondrocytes following ACLR. CONCLUSION: This study reveals a biphasic role for Hh signaling during the tendon-to-bone integration process after ACLR. In addition, the Hh pathway is a promising therapeutic target to improve tendon-to-bone repair outcomes.
Assuntos
Reconstrução do Ligamento Cruzado Anterior , Proteínas Hedgehog , Animais , Camundongos , Proteínas Hedgehog/genética , Osso e Ossos/metabolismo , Tendões , Diferenciação Celular , Reconstrução do Ligamento Cruzado Anterior/métodosRESUMO
Tendons are unique dense connective tissues with discrete zones having specific structure and function. They are juxtaposed with other tissues (e.g., bone, muscle, and fat) with different compositional, structural, and mechanical properties. Additionally, tendon properties change drastically with growth and development, disease, aging, and injury. Consequently, there are unique challenges to performing high quality histological assessment of this tissue. To address this need, histological assessment was one of the breakout session topics at the 2022 Orthopaedic Research Society (ORS) Tendon Conference hosted at the University of Pennsylvania. The purpose of the breakout session was to discuss needs from members of the ORS Tendon Section related to histological procedures, data presentation, knowledge dissemination, and guidelines for future work. Therefore, this review provides a brief overview of the outcomes of this discussion and provides a set of guidelines, based on the perspectives from our laboratories, for histological assessment to assist researchers in their quest to utilize these techniques to enhance the outcomes and interpretations of their studies.
Assuntos
Osso e Ossos , Tendões , Tendões/fisiologia , MúsculosRESUMO
Traditional tendon-to-bone repair where the tendon is reattached to bone via suture anchors often results in disorganized scar production rather than the formation of a zonal insertion. In contrast, ligament reconstructions where tendon grafts are passed through bone tunnels can yield zonal tendon-to-bone attachments between the graft and adjacent bone. Therefore, ligament reconstructions can be used to study mechanisms that regulate zonal tendon-to-bone repair in the adult. Anterior cruciate ligament (ACL) reconstructions are one of the most common reconstruction procedures and while we know that cells from outside the graft produce the attachments, we have not yet established specific cell populations that give rise to this tissue. To address this knowledge gap, we performed ACL reconstructions in lineage tracing mice where α-smooth muscle actin (αSMACreERT2) was used to label αSMA-expressing progenitors within the bone marrow that produced zonal attachments. Expression of αSMA was increased during early stages of the repair process such that the contribution of SMA-labeled cells to the tunnel integration was highest when tamoxifen was delivered in the first week post-surgery. The zonal attachments shared features with normal entheses, including tidemarks oriented perpendicularly to collagen fibers, Col1a1-expressing cells, alkaline phosphatase activity, and proteoglycan-rich staining. Finally, the integration strength increased with time, requiring 112% greater force to remove the graft from the tunnel at 28 days compared with 14 days post-surgery. Future studies will target these progenitor cells to define the pathways that regulate zonal tendon-to-bone repair in the adult. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:105-116, 2020.