RESUMO
We propose an organic thermoelectric device having a new power generation mechanism that extracts small-scale thermal energy, i.e., a few tens of millielectronvolts, at room temperature without a temperature gradient. We demonstrate a new operating mechanism based on an organic thermoelectric power generation architecture that uses the charge separation capabilities of organic charge transfer (CT) interfaces composed of copper (II) phthalocyanine and copper (II) 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25-hexadecafluoro-29H,31H-phthalocyanine as the donor and acceptor, respectively. With the optimized device architecture, values of open-circuit voltage VOC of 384 mV, short-circuit current density JSC of 1.1 µA/cm2, and maximum output Pmax of 94 nW/cm2 are obtained. The temperature characteristics of the thermoelectric properties yield activation energy values of approximately 20-60 meV, confirming the low-level thermal energy's contribution to the power generation mechanism. Furthermore, from surface potential analysis using a Kelvin probe, we confirm that charges are generated at the CT interface, and the electrons and holes are diffused to the counter-electrodes with the aid of Fermi-level alignment between adjacent layers.
RESUMO
INTRODUCTION: Plasmapheresis is a well-recognized treatment for autoimmune neurological diseases in Japan. However, the practice varies depending on the facility, and the actual treatment conditions are unclear. METHODS: To clarify real-world conditions, a prospective observational study was conducted on patients with neurological diseases who were scheduled to receive plasmapheresis. A dataset was analyzed that included 887 treatments from 210 patients with myasthenia gravis (MG), multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), and other diseases for 82, 30, 24, and 74 patients, respectively. RESULTS: The types of plasmapheresis performed included immunoadsorption plasmapheresis, plasma exchange, and double filtration plasmapheresis with 620, 213, and 54 treatments, respectively. Approximately, 60% of the treatments were performed using peripheral blood access alone. Non-serious adverse events were observed in 10 patients. CONCLUSIONS: A statistically significant improvement was observed after plasmapheresis in patients with MG, MS, and NMOSD. These were evaluated using the modified Rankin Scale.