Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Legal Med ; 138(4): 1741-1757, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38467754

RESUMO

Sex and chronological age estimation are crucial in forensic investigations and research on individual identification. Although manual methods for sex and age estimation have been proposed, these processes are labor-intensive, time-consuming, and error-prone. The purpose of this study was to estimate sex and chronological age from panoramic radiographs automatically and robustly using a multi-task deep learning network (ForensicNet). ForensicNet consists of a backbone and both sex and age attention branches to learn anatomical context features of sex and chronological age from panoramic radiographs and enables the multi-task estimation of sex and chronological age in an end-to-end manner. To mitigate bias in the data distribution, our dataset was built using 13,200 images with 100 images for each sex and age range of 15-80 years. The ForensicNet with EfficientNet-B3 exhibited superior estimation performance with mean absolute errors of 2.93 ± 2.61 years and a coefficient of determination of 0.957 for chronological age, and achieved accuracy, specificity, and sensitivity values of 0.992, 0.993, and 0.990, respectively, for sex prediction. The network demonstrated that the proposed sex and age attention branches with a convolutional block attention module significantly improved the estimation performance for both sex and chronological age from panoramic radiographs of elderly patients. Consequently, we expect that ForensicNet will contribute to the automatic and accurate estimation of both sex and chronological age from panoramic radiographs.


Assuntos
Aprendizado Profundo , Radiografia Panorâmica , Determinação do Sexo pelo Esqueleto , Humanos , Masculino , Adulto , Idoso , Feminino , Adolescente , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Adulto Jovem , República da Coreia , Determinação do Sexo pelo Esqueleto/métodos , Determinação da Idade pelos Dentes/métodos
2.
Clin Chem ; 69(11): 1247-1259, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37725909

RESUMO

BACKGROUND: Development of validated biomarkers to detect early Alzheimer disease (AD) neuropathology is needed for therapeutic AD trials. Abnormal concentrations of "core" AD biomarkers, cerebrospinal fluid (CSF) amyloid beta1-42, total tau, and phosphorylated tau correlate well with neuroimaging biomarkers and autopsy findings. Nevertheless, given the limitations of established CSF and neuroimaging biomarkers, accelerated development of blood-based AD biomarkers is underway. CONTENT: Here we describe the clinical significance of CSF and plasma AD biomarkers to detect disease pathology throughout the Alzheimer continuum and correlate with imaging biomarkers. Use of the AT(N) classification by CSF and imaging biomarkers provides a more objective biologically based diagnosis of AD than clinical diagnosis alone. Significant progress in measuring CSF AD biomarkers using extensively validated highly automated assay systems has facilitated their transition from research use only to approved in vitro diagnostics tests for clinical use. We summarize development of plasma AD biomarkers as screening tools for enrollment and monitoring participants in therapeutic trials and ultimately in clinical care. Finally, we discuss the challenges for AD biomarkers use in clinical trials and precision medicine, emphasizing the possible ethnocultural differences in the levels of AD biomarkers. SUMMARY: CSF AD biomarker measurements using fully automated analytical platforms is possible. Building on this experience, validated blood-based biomarker tests are being implemented on highly automated immunoassay and mass spectrometry platforms. The progress made developing analytically and clinically validated plasma AD biomarkers within the AT(N) classification scheme can accelerate use of AD biomarkers in therapeutic trials and routine clinical practice.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Proteínas tau/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores , Imunoensaio , Fragmentos de Peptídeos/líquido cefalorraquidiano
3.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511207

RESUMO

Insulin resistance as a hallmark of type 2 DM (T2DM) plays a role in dementia by promoting pathological lesions or enhancing the vulnerability of the brain. Numerous studies related to insulin/insulin-like growth factor 1 (IGF-1) signaling are linked with various types of dementia. Brain insulin resistance in dementia is linked to disturbances in Aß production and clearance, Tau hyperphosphorylation, microglial activation causing increased neuroinflammation, and the breakdown of tight junctions in the blood-brain barrier (BBB). These mechanisms have been studied primarily in Alzheimer's disease (AD), but research on other forms of dementia like vascular dementia (VaD), Lewy body dementia (LBD), and frontotemporal dementia (FTD) has also explored overlapping mechanisms. Researchers are currently trying to repurpose anti-diabetic drugs to treat dementia, which are dominated by insulin sensitizers and insulin substrates. Although it seems promising and feasible, none of the trials have succeeded in ameliorating cognitive decline in late-onset dementia. We highlight the possibility of repositioning anti-diabetic drugs as a strategy for dementia therapy by reflecting on current and previous clinical trials. We also describe the molecular perspectives of various types of dementia through the insulin/IGF-1 signaling pathway.


Assuntos
Doença de Alzheimer , Resistência à Insulina , Insulinas , Humanos , Fator de Crescimento Insulin-Like I/uso terapêutico , Reposicionamento de Medicamentos , Doença de Alzheimer/metabolismo
4.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047070

RESUMO

Sarcopenic obesity (SO) is characterized by atrophic skeletal muscle impairment (sarcopenia) and obesity, which is associated with adverse outcomes of morbidity and mortality in elderly people. We investigated the effects of melatonin and exercise training on SO in 32-week-old senescence-accelerated mouse-prone-8 (SAMP8) mice fed a normal diet or a high-fat diet for 16 weeks. Melatonin, exercise, or melatonin and exercise for 8 weeks displayed reductions in the SO-induced impairment of skeletal muscle function and atrophy. Specifically, a decrease in mitochondrial calcium retention capacity in skeletal muscles observed in the HFD-con group was attenuated in melatonin and/or exercise intervention groups. More importantly, HFD-con mice displayed a lower number of Pax7+ satellite cells (SCs) and higher expression of p16ink than P8ND mice, which were attenuated by melatonin and/or exercise interventions. The cellular senescence in SC-derived primary myoblasts from HFD-con mice was significantly attenuated in myoblasts from the melatonin and/or exercise groups, which was reproduced in a senescence model of H2O2-treated C2C12 myoblasts. Our results suggest that melatonin and exercise training attenuate SO-induced skeletal muscle dysfunction, at least in part, through preserving the SC pool by inhibiting cellular senescence and attenuating mitochondrial dysfunction.


Assuntos
Melatonina , Sarcopenia , Camundongos , Animais , Sarcopenia/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Peróxido de Hidrogênio/metabolismo , Obesidade/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Dieta Hiperlipídica/efeitos adversos
5.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769259

RESUMO

Severe vascular and nerve damage from diabetes is a leading cause of erectile dysfunction (ED) and poor response to oral phosphodiesterase 5 inhibitors. Argonaute 2 (Ago2), a catalytic engine in mammalian RNA interference, is involved in neurovascular regeneration under inflammatory conditions. In the present study, we report that Ago2 administration can effectively improve penile erection by enhancing cavernous endothelial cell angiogenesis and survival under diabetic conditions. We found that although Ago2 is highly expressed around blood vessels and nerves, it is significantly reduced in the penis tissue of diabetic mice. Exogenous administration of the Ago2 protein restored erectile function in diabetic mice by reducing reactive oxygen species production-signaling pathways (inducing eNOS Ser1177/NF-κB Ser536 signaling) and improving cavernous endothelial angiogenesis, migration, and cell survival. Our study provides new evidence that Ago2 mediation may be a promising therapeutic strategy and a new approach for diabetic ED treatment.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Disfunção Erétil , Animais , Humanos , Masculino , Camundongos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/etiologia , Mamíferos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ereção Peniana , Pênis/irrigação sanguínea , Espécies Reativas de Oxigênio/metabolismo , Estreptozocina/farmacologia
6.
J Cell Mol Med ; 26(20): 5122-5134, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36071453

RESUMO

Nerve injury-induced protein 1 (Ninjurin1, Ninj1) is a membrane protein that mediates cell adhesion. The role of Ninj1 during inflammatory response has been widely investigated in macrophages and endothelial cells. Ninj1 is expressed in various tissues, and the liver also expresses high levels of Ninj1. Although the hepatic upregulation of Ninj1 has been reported in human hepatocellular carcinoma and septic mice, little is known of its function during the pathogenesis of liver diseases. In the present study, the role of Ninj1 in liver inflammation was explored using lipopolysaccharide (LPS)/D-galactosamine (D-gal)-induced acute liver failure (ALF) model. When treated with LPS/D-gal, conventional Ninj1 knock-out (KO) mice exhibited a mild inflammatory phenotype as compared with wild-type (WT) mice. Unexpectedly, myeloid-specific Ninj1 KO mice showed no attenuation of LPS/D-gal-induced liver injury. Whereas, Ninj1 KO primary hepatocytes were relatively insensitive to TNF-α-induced caspase activation as compared with WT primary hepatocytes. Also, Ninj1 knock-down in L929 and AML12 cells and Ninj1 KO in HepG2 cells ameliorated TNF-α-mediated apoptosis. Consistent with in vitro results, hepatocyte-specific ablation of Ninj1 in mice alleviated LPS/D-gal-induced ALF. Summarizing, our in vivo and in vitro studies show that lack of Ninj1 in hepatocytes diminishes LPS/D-gal-induced ALF by alleviating TNF-α/TNFR1-induced cell death.


Assuntos
Moléculas de Adesão Celular Neuronais , Galactosamina , Falência Hepática Aguda , Fatores de Crescimento Neural , Animais , Apoptose , Caspases/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Células Endoteliais/metabolismo , Hepatócitos/metabolismo , Humanos , Lipopolissacarídeos , Fígado/metabolismo , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/genética , Falência Hepática Aguda/metabolismo , Camundongos , Camundongos Knockout , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
FASEB J ; 35(2): e21340, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33455027

RESUMO

The purpose of this study is to determine whether moderate aerobic exercise training improves high-fat diet-induced alterations in mitochondrial function and structure in the skeletal muscle. Male 4-week-old C57BL/6 mice were randomly divided into four groups: control (CON), control plus exercise (CON + EX), high-fat diet (HFD), and high-fat diet plus exercise (HFD + EX). After obesity was induced by 20 weeks of 60% HFD, treadmill exercise training was performed at 13-16 m/min, 40-50 min/day, and 6 days/week for 12 weeks. Mitochondrial structure, function, and dynamics, and mitophagy were analyzed in the skeletal muscle fibers from the red gastrocnemius. Exercise training increased mitochondrial number and area and reduced high-fat diet-induced obesity and hyperglycemia. In addition, exercise training attenuated mitochondrial dysfunction in the permeabilized myofibers, indicating that HFD-induced decrease of mitochondrial O2 respiration and Ca2+ retention capacity and increase of mitochondrial H2 O2 emission were attenuated in the HFD + EX group compared to the HFD group. Exercise also ameliorated HFD-induced imbalance of mitochondrial fusion and fission, demonstrating that HFD-induced decrease in fusion protein levels was elevated, and increase in fission protein levels was reduced in the HFD + EX groups compared with the HFD group. Moreover, dysregulation of mitophagy induced by HFD was mitigated in the HFD + EX group, indicating a decrease in PINK1 protein level. Our findings demonstrated that moderate aerobic exercise training mitigated obesity-induced insulin resistance by improving mitochondrial function, and reversed obesity-induced mitochondrial structural damage by improving mitochondrial dynamics and mitophagy, suggesting that moderate aerobic exercise training may play a therapeutic role in protecting the skeletal muscle against mitochondrial impairments and insulin resistance induced by obesity.


Assuntos
Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Obesidade/terapia , Condicionamento Físico Animal/métodos , Animais , Sinalização do Cálcio , Respiração Celular , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial , Obesidade/etiologia , Obesidade/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
8.
Ann Neurol ; 88(3): 574-587, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32542885

RESUMO

OBJECTIVE: We analyzed the longitudinal profile of Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers in early Parkinson's disease (PD) compared with healthy controls (HCs) and tested baseline CSF biomarkers for prediction of clinical decline in PD. METHODS: Amyloid-ß 1 to 42 (Aß42 ), total tau (t-tau) and phosphorylated tau (p-tau) at the threonine 181 position were measured using the high-precision Roche Elecsys electrochemiluminescence immunoassay in all available CSF samples from longitudinally studied patients with PD (n = 416) and HCs (n = 192) followed for up to 3 years in the Parkinson's Progression Markers Initiative (PPMI). Longitudinal CSF and clinical data were analyzed with linear-mixed effects models. RESULTS: We found patients with PD had lower CSF t-tau (median = 157.7 pg/mL; range = 80.9-467.0); p-tau (median = 13.4 pg/mL; range = 8.0-40.1), and Aß42 (median = 846.2 pg/mL; range = 238.8-3,707.0) than HCs at baseline (CSF t-tau median = 173.5 pg/mL; range = 82.0-580.8; p-tau median = 15.4 pg/mL; range = 8.1-73.6; and Aß42 median = 926.5 pg/mL; range = 239.1-3,297.0; p < 0.05-0.001) and a moderate-to-strong correlation among these biomarkers in both patients with PD and HCs (Rho = 0.50-0.97; p < 0.001). Of the patients with PD, 31.5% had pathologically low levels of CSF Aß42 at baseline and these patients with PD had lower p-tau levels (median = 10.8 pg/mL; range = 8.0-32.8) compared with 27.7% of HCs with pathologically low CSF Aß42 (CSF p-tau median = 12.8 pg/mL; range 8.2-73.6; p < 0.03). In longitudinal CSF analysis, we found patients with PD had greater decline in CSF Aß42 (mean difference = -41.83 pg/mL; p = 0.03) and CSF p-tau (mean difference = -0.38 pg/mL; p = 0.03) at year 3 compared with HCs. Baseline CSF Aß42 values predicted small but measurable decline on cognitive, autonomic, and motor function in early PD. INTERPRETATION: Our data suggest baseline CSF AD biomarkers may have prognostic value in early PD and that the dynamic change of these markers, although modest over a 3-year period, suggest biomarker profiles in PD may deviate from healthy aging. ANN NEUROL 2020;88:574-587.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Idoso , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Doença de Parkinson , Estudos Prospectivos
9.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204534

RESUMO

Leaky gut is a condition of increased paracellular permeability of the intestine due to compromised tight junction barriers. In recent years, this affliction has drawn the attention of scientists from different fields, as a myriad of studies prosecuted it to be the silent culprit of various immune diseases. Due to various controversies surrounding its culpability in the clinic, approaches to leaky gut are restricted in maintaining a healthy lifestyle, avoiding irritating factors, and practicing alternative medicine, including the consumption of supplements. In the current study, we investigate the tight junction-modulating effects of processed Aloe vera gel (PAG), comprising 5-400-kD polysaccharides as the main components. Our results show that oral treatment of 143 mg/kg PAG daily for 10 days improves the age-related leaky gut condition in old mice, by reducing their individual urinal lactulose/mannitol (L/M) ratio. In concordance with in vivo experiments, PAG treatment at dose 400 µg/mL accelerated the polarization process of Caco-2 monolayers. The underlying mechanism was attributed to enhancement in the expression of intestinal tight junction-associated scaffold protein zonula occludens (ZO)-1 at the translation level. This was induced by activation of the MAPK/ERK signaling pathway, which inhibits the translation repressor 4E-BP1. In conclusion, we propose that consuming PAG as a complementary food has the potential to benefit high-risk patients.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Preparações de Plantas/farmacologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Animais , Biomarcadores , Linhagem Celular , Permeabilidade da Membrana Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , Camundongos , Modelos Biológicos , Transdução de Sinais , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo
10.
Pflugers Arch ; 472(2): 179-193, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32048000

RESUMO

Aging is associated with vulnerability to cardiovascular diseases, and mitochondrial dysfunction plays a critical role in cardiovascular disease pathogenesis. Exercise training is associated with benefits against chronic cardiac diseases. The purpose of this study was to determine the effects of aging and treadmill exercise training on mitochondrial function and apoptosis in the rat heart. Fischer 344 rats were divided into young sedentary (YS; n = 10, 4 months), young exercise (YE; n = 10, 4 months), old sedentary (OS; n = 10, 20 months), and old exercise (OE; n = 10, 20 months) groups. Exercise training groups ran on a treadmill at 15 m/min (young) or 10 m/min (old), 45 min/day, 5 days/week for 8 weeks. Morphological parameters, mitochondrial function, mitochondrial dynamics, mitophagy, and mitochondria-mediated apoptosis were analyzed in cardiac muscle. Mitochondrial O2 respiratory capacity and Ca2+ retention capacity gradually decreased, and mitochondrial H2O2 emitting potential significantly increased with aging. Exercise training attenuated aging-induced mitochondrial H2O2 emitting potential and mitochondrial O2 respiratory capacity, while protecting Ca2+ retention in the old groups. Aging triggered imbalanced mitochondrial dynamics and excess mitophagy, while exercise training ameliorated the aging-induced imbalance in mitochondrial dynamics and excess mitophagy. Aging induced increase in Bax and cleaved caspase-3 protein levels, while decreasing Bcl-2 levels. Exercise training protected against the elevation of apoptotic signaling markers by decreasing Bax and cleaved caspase-3 and increasing Bcl-2 protein levels, while decreasing the Bax/Bcl-2 ratio and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive myonuclei. These data demonstrate that regular exercise training prevents aging-induced impairment of mitochondrial function and mitochondria-mediated apoptosis in cardiac muscles.


Assuntos
Apoptose , Coração/crescimento & desenvolvimento , Mitocôndrias Cardíacas/metabolismo , Condicionamento Físico Animal/métodos , Animais , Cálcio/metabolismo , Coração/fisiologia , Masculino , Dinâmica Mitocondrial , Mitofagia , Miocárdio/metabolismo , Ratos , Ratos Endogâmicos F344 , Espécies Reativas de Oxigênio/metabolismo
11.
Int J Mol Sci ; 21(9)2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32397599

RESUMO

Cells have developed elaborate quality-control mechanisms for proteins and organelles to maintain cellular homeostasis. Such quality-control mechanisms are maintained by conformational folding via molecular chaperones and by degradation through the ubiquitin-proteasome or autophagy-lysosome system. Accumulating evidence suggests that impaired autophagy contributes to the accumulation of intracellular inclusion bodies consisting of misfolded proteins, which is a hallmark of most neurodegenerative diseases. In addition, genetic mutations in core autophagy-related genes have been reported to be linked to neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Conversely, the pathogenic proteins, such as amyloid ß and α-synuclein, are detrimental to the autophagy pathway. Here, we review the recent advances in understanding the relationship between autophagic defects and the pathogenesis of neurodegenerative diseases and suggest autophagy induction as a promising strategy for the treatment of these conditions.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Autofagossomos/metabolismo , Autofagia/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Serina-Treonina Quinases TOR/metabolismo , alfa-Sinucleína/metabolismo , Animais , Autofagossomos/enzimologia , Autofagossomos/genética , Autofagia/efeitos dos fármacos , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Neurônios/patologia , Serina-Treonina Quinases TOR/genética
12.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396633

RESUMO

Sweet potato (Ipomoea batata) is considered a superfood among vegetables and has been consumed for centuries. Traditionally, sweet potato is used to treat several illnesses, including diarrhea and stomach disorders. This study aimed to explore the protective effect of sweet potato on intestinal barrier function, and to identify the active compounds of sweet potato and their underlying mechanism of action. To this purpose, bioactivity-guided isolation, Western blotting, and immunostaining assays were applied. Interestingly, our bioactivity-guided approach enabled the first isolation and identification of trifostigmanoside I (TS I) from sweet potato. TS I induced mucin production and promoted the phosphorylation of PKCα/ß in LS174T human colon cancer cells. In addition, it protected the function of tight junctions in the Caco-2 cell line. These findings suggest that TS I rescued the impaired abilities of MUC2, and protected the tight junctions through PKCα/ß, to maintain intestinal barrier function.


Assuntos
Glicosídeos/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Ipomoea batatas/química , Monoterpenos/farmacologia , Mucina-2/metabolismo , Proteína Quinase C beta/metabolismo , Proteína Quinase C-alfa/metabolismo , Junções Íntimas/efeitos dos fármacos , Western Blotting , Células CACO-2 , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão/métodos , Expressão Gênica/efeitos dos fármacos , Glicosídeos/química , Humanos , Mucosa Intestinal/fisiologia , Estrutura Molecular , Monoterpenos/química , Mucina-2/genética , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Proteína Quinase C beta/genética , Proteína Quinase C-alfa/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Junções Íntimas/metabolismo
13.
Int J Mol Sci ; 21(2)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963519

RESUMO

Nerve injury-induced protein 1 (Ninjurin1, Ninj1) is a cell-surface adhesion molecule that regulates cell migration and attachment. This study demonstrates the increase in Ninj1 protein expression during development of intestinal inflammation. Ninj1-deficient mice exhibited significantly attenuated bodyweight loss, shortening of colon length, intestinal inflammation, and lesser pathological lesions than wild-type mice. Although more severe inflammation and serious lesions are observed in wild-type mice than Ninj1-deficient mice, there were no changes in the numbers of infiltrating macrophages in the inflamed tissues obtained from WT and Ninj1-deficient mice. Ninj1 expression results in activation of macrophages, and these activated macrophages secrete more cytokines and chemokines than Ninj1-deficient macrophages. Moreover, mice with conditional deletion of Ninj1 in myeloid cells (Ninj1fl/fl; Lyz-Cre+) alleviated experimental colitis compared with wild-type mice. In summary, we propose that the Ninj1 in myeloid cells play a pivotal function in intestinal inflammatory conditions.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Adesão Celular , Movimento Celular , Colite/prevenção & controle , Inflamação/prevenção & controle , Enteropatias/prevenção & controle , Células Mieloides/metabolismo , Fatores de Crescimento Neural/fisiologia , Animais , Células Cultivadas , Colite/etiologia , Colite/metabolismo , Colite/patologia , Feminino , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Enteropatias/etiologia , Enteropatias/metabolismo , Enteropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
14.
Int J Mol Sci ; 21(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823945

RESUMO

Although Alzheimer's disease (AD)-like pathology is frequently found in patients with post-stroke dementia, little is known about the effects of aerobic exercise on the modifications of tau and related proteins. Therefore, we evaluated the effects of aerobic exercise on the phosphorylation and acetylation of tau and the expressions of tau-related proteins, after middle cerebral artery occlusion (MCAO) stroke. Twenty-four Sprague-Dawley rats with MCAO infarction were used in this study. The rehabilitation group (RG) received treadmill training 40 min/day for 12 weeks, whereas the sedentary group (SG) did not receive any type of training. Functional tests, such as the single pellet reaching task, rotarod, and radial arm maze tests, were performed monthly for 3 months. In ipsilateral cortices in the RG and SG groups, level of Ac-tau was lower in the RG, whereas levels of p-tauS396, p-tauS262, and p-tauS202/T205 were not significantly lower in the RG. Level of phosphorylated glycogen synthase kinase 3-beta Tyr 216 (p-GSK3ßY216) was lower in the RG, but levels of p-AMPK and phosphorylated glycogen synthase kinase 3-beta Ser 9 (p-GSK3ßS9) were not significantly lower. Levels of COX-2 and BDNF were not significantly different between the two groups, while SIRT1 significantly decreased in ipsilateral cortices in RG. In addition, aerobic training also improved motor, balance, and memory functions. Rehabilitation with aerobic exercise inhibited tau modification, especially tau acetylation, following infarction in the rat MCAO model, which was accompanied with the improvement of motor and cognitive functions.


Assuntos
Infarto da Artéria Cerebral Média/patologia , Condicionamento Físico Animal , Proteínas tau/metabolismo , Acetilação , Animais , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Aprendizagem em Labirinto , Memória , Atividade Motora , Fosforilação , Ratos Sprague-Dawley
15.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354038

RESUMO

Sarcopenia is defined as the involuntary loss of skeletal muscle mass and function with aging and is associated with several adverse health outcomes. Recently, the disruption of regular circadian rhythms, due to shift work or nocturnal lifestyle, is emerging as a novel deleterious factor for the development of sarcopenia. The underlying mechanisms responsible for circadian disruption-induced sarcopenia include molecular circadian clock and mitochondrial function associated with the regulation of circadian rhythms. Exercise is a potent modulator of skeletal muscle metabolism and is considered to be a crucial preventative and therapeutic intervention strategy for sarcopenia. Moreover, emerging evidence shows that exercise, acting as a zeitgeber (time cue) of the skeletal muscle clock, can be an efficacious tool for re-setting the clock in sarcopenia. In this review, we provide the evidence of the impact of circadian disruption on skeletal muscle loss resulting in sarcopenia. Furthermore, we highlight the importance of exercise timing (i.e., scheduled physical activity) as a novel therapeutic strategy to target circadian disruption in skeletal muscle.


Assuntos
Relógios Circadianos , Sarcopenia/prevenção & controle , Sarcopenia/reabilitação , Animais , Exercício Físico , Terapia por Exercício , Redes Reguladoras de Genes , Humanos , Estilo de Vida , Fatores de Risco , Sarcopenia/genética
16.
Pflugers Arch ; 471(3): 491-505, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30627775

RESUMO

Exercise is a well-known non-pharmacological intervention to improve brain functions, including cognition, memory, and motor coordination. Contraction of skeletal muscles during exercise releases humoral factors that regulate the whole-body metabolism via interaction with other non-muscle organs. Myokines are muscle-derived effectors that regulate body metabolism by autocrine, paracrine, or endocrine action and were reportedly suggested as "exercise factors" that can improve the brain function. However, several aspects remain to be elucidated, namely the specific activities of myokines related to the whole-body metabolism or brain function, the mechanisms of regulation of other organs or cells, the sources of "exercise factors" that regulate brain function, and their mechanisms of interaction with non-muscle organs. In this paper, we present the physiological functions of myokines secreted by exercise, including regulation of the whole-body metabolism by interaction with other organs and adaptation of skeletal muscles to exercise. In addition, we discuss the functions of myokines that possibly contribute to exercise-induced improvement of brain function. Among several myokines, brain-derived neurotrophic factor (BDNF) is the most studied myokine that regulates adult neurogenesis and synaptic plasticity. However, the source of circulating BDNF and its upstream effector, insulin-like growth factor (IGF-1), and irisin and the effect size of peripheral BDNF, irisin, and IGF-1 released after exercise should be further investigated. Recently, cathepsin B has been reported to be secreted from skeletal muscles and upregulate BDNF following exercise, which was associated with improved cognitive function. We reviewed the level of evidence for the effect of myokine on the brain function. Level of evidence for the association of the change in circulating myokine following exercise and improvement of neuropsychiatric function is lower than the level of evidence for the benefit of exercise on the brain. Therefore, more clinical evidences for the association of myokine release after exercise and their effect on the brain function are required. Finally, we discuss the effect size of the action of myokines on cognitive benefits of exercise, in addition to other contributors, such as improvement of the cardiovascular system or the effect of "exercise factors" released from non-muscle organs, particularly in patients with sarcopenia.


Assuntos
Citocinas/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Humanos , Testes Neuropsicológicos
17.
Biochem Biophys Res Commun ; 513(1): 49-55, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30935693

RESUMO

Liver fibrosis is characterized by formation of scar tissue in the liver. The role of STAT3 signaling has been implicated on activating hepatic stellate cells (HSC) to myofibroblast-like cells in liver fibrosis. Major factors that activate STAT3 signaling are TGF-ß1 and IL-6, which are upregulated in the liver in patients afflicted with liver fibrosis. Recent reports indicate that not only IL-6, but also the non-canonical signaling pathway of TGF-ß1 is associated with STAT3 signaling. In this study, we demonstrate a new function of the STAT3 inhibitor, STX-0119, in liver fibrosis. STX-0119 is an inhibitor of STAT3 dimerization, which is required for nuclear localization of STAT3. We first investigated the anti-fibrotic effect of STX-0119 in in vitro experiments. Exposure to STX-0119 inhibited the nuclear localization of STAT3 in HSCs, resulting in decreased expression of its target genes, such as col1a1 and αSMA. In addition, STX-0119 also inhibited the TGF-ß1/IL-6-induced activation of HSCs. Next, we examined the in vivo effect of STX-0119 in the liver fibrosis mouse model using thioacetamide (TAA) and carbon tetrachloride (CCl4). STX-0119 attenuated the TAA-induced liver fibrosis by inhibiting activation of HSCs to myofibroblast-like cells. Consistent with the in vivo results using TAA-induced liver fibrosis model, treatment of STX-0119 similarly attenuated CCl4-induced liver fibrosis. In conclusion, we believe that STX-0119 inhibits the development of liver fibrosis by blocking the activation of hepatic stellate cells. These results indicate that STX-0119 is a potential new therapeutic strategy to prevent disease progression to cirrhosis.


Assuntos
Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Oxidiazóis/uso terapêutico , Quinolinas/uso terapêutico , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Colágeno/análise , Células Estreladas do Fígado/patologia , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Int J Mol Sci ; 20(7)2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965555

RESUMO

Alzheimer's disease (AD) is a chronic progressive neurodegenerative disease characterized by memory decline and cognitive dysfunction. Although the primary causes of AD are not clear, it is widely accepted that the accumulation of amyloid beta (Aß) and consecutive hyper-phosphorylation of tau, synaptic loss, oxidative stress and neuronal death might play a vital role in AD pathogenesis. Recently, it has been widely suggested that extracellular vesicles (EVs), which are released from virtually all cell types, are a mediator in regulating AD pathogenesis. Clinical evidence for the diagnostic performance of EV-associated biomarkers, particularly exosome biomarkers in the blood, is also emerging. In this review, we briefly introduce the biological function of EVs in the central nervous system and discuss the roles of EVs in AD pathogenesis. In particular, the roles of EVs associated with autophagy and lysosomal degradation systems in AD proteinopathy and in disease propagation are discussed. Next, we summarize candidates for biochemical AD biomarkers in EVs, including proteins and miRNAs. The accumulating data brings hope that the application of EVs will be helpful for early diagnostics and the identification of new therapeutic targets for AD. However, at the same time, there are several challenges in developing valid EV biomarkers. We highlight considerations for the development of AD biomarkers from circulating EVs, which includes the standardization of pre-analytical sources of variability, yield and purity of isolated EVs and quantification of EV biomarkers. The development of valid EV AD biomarkers may be facilitated by collaboration between investigators and the industry.


Assuntos
Doença de Alzheimer/metabolismo , Biomarcadores/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Humanos
19.
Int J Mol Sci ; 20(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146414

RESUMO

AMP-activated protein kinase (AMPK) has been implicated in contractility changes in bladders with partial bladder outlet obstruction (PBOO), but the role of AMPK in the contractile response of normal bladder remains unclear. We investigated the phosphorylation of AMPKα and expression of the involved upstream AMPK kinases (AMPKKs) in a model of bladders with PBOO and sought to determine whether the pharmacological inhibition of these two factors affected detrusor contractility in normal bladders, using female Sprague-Dawley rats. Cystometry and Western blot analysis were performed in rats that were subjected to PBOO induction or a sham operation. Cystometry was performed in normal rats that received selective inhibitors of AMPKα and Ca2+/calmodulin-dependent protein kinase kinase (CaMKKß) (compound C and STO-609, respectively) at doses determined in the experiments. In the PBOO bladders, bladder weight and micturition pressure (MP) were higher and AMPKα phosphorylation (T172) and CaMKKß expression was significantly reduced. Compound C and STO-609 increased MP. The increased contractile response in bladders with PBOO-induced hypertrophy was related to decreased CaMKKß/AMPK signaling activity, and the pharmacological inhibition of this pathway in normal bladders increased detrusor contractility, implying a role of CaMKKß/AMPK signaling in the bladder in the regulation of detrusor contractility.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Contração Muscular , Proteínas Quinases/metabolismo , Obstrução do Colo da Bexiga Urinária/metabolismo , Bexiga Urinária/metabolismo , Micção , Quinases Proteína-Quinases Ativadas por AMP , Animais , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Feminino , Naftalimidas/farmacologia , Naftalimidas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ratos , Ratos Sprague-Dawley , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiologia , Bexiga Urinária/fisiopatologia , Obstrução do Colo da Bexiga Urinária/tratamento farmacológico
20.
Cell Physiol Biochem ; 48(5): 1829-1842, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30092568

RESUMO

BACKGROUND/AIMS: The complicated differentiation processes of cells in skeletal muscle against inflammation that induce muscle atrophy are not fully elucidated. Given that skeletal muscle is a secretory organ, we evaluated the effects of inflammation on myogenic signals and myokine expression, and the roles of inflammatory exosomes released by myotubes in myogenic differentiation. METHODS: Inflammation was induced by treatment of fully differentiated C2C12 myotubes with a cytokine mixture of TNF-α and INF-γ. Exosome-like vesicles (ELVs) were isolated from conditioned media of control or inflamed myotubes and incubated with myoblasts. The expression of molecular switches that contribute to myogenic differentiation, including several kinases, their downstream targets, and myokines, were evaluated using immunoblot analysis in inflamed myotubes and in myoblasts treated with ELVs. RESULTS: Inflammation activated molecular mechanisms contributing to muscle atrophy, including AMPK, p-38 MAPK and JNK, while inhibiting Akt-mediated myogenic signals. In addition, inflammation induced myostatin expression with suppression of a myostatin-counteracting myokine, decorin. Well-characterized ELVs released from inflamed myotubes induced myoblast inflammation and inhibited myogenic mechanisms while stimulating atrophic signals. CONCLUSION: Inflammation of skeletal muscle induces muscle atrophy via multiple mechanisms, including the regulation of myokines and kinases. Inflammatory ELVs are likely to contribute to inflammation-induced muscle atrophy.


Assuntos
Diferenciação Celular , Micropartículas Derivadas de Células/metabolismo , Proteína MyoD/metabolismo , Miostatina/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Linhagem Celular , Citocinas/farmacologia , Decorina/metabolismo , Regulação da Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Miogenina/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA