Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38544154

RESUMO

Sensor applications in internet of things (IoT) systems, coupled with artificial intelligence (AI) technology, are becoming an increasingly significant part of modern life. For low-latency AI computation in IoT systems, there is a growing preference for edge-based computing over cloud-based alternatives. The restricted coulomb energy neural network (RCE-NN) is a machine learning algorithm well-suited for implementation on edge devices due to its simple learning and recognition scheme. In addition, because the RCE-NN generates neurons as needed, it is easy to adjust the network structure and learn additional data. Therefore, the RCE-NN can provide edge-based real-time processing for various sensor applications. However, previous RCE-NN accelerators have limited scalability when the number of neurons increases. In this paper, we propose a network-on-chip (NoC)-based RCE-NN accelerator and present the results of implementation on a field-programmable gate array (FPGA). NoC is an effective solution for managing massive interconnections. The proposed RCE-NN accelerator utilizes a hierarchical-star (H-star) topology, which efficiently handles a large number of neurons, along with routers specifically designed for the RCE-NN. These approaches result in only a slight decrease in the maximum operating frequency as the number of neurons increases. Consequently, the maximum operating frequency of the proposed RCE-NN accelerator with 512 neurons increased by 126.1% compared to a previous RCE-NN accelerator. This enhancement was verified with two datasets for gas and sign language recognition, achieving accelerations of up to 54.8% in learning time and up to 45.7% in recognition time. The NoC scheme of the proposed RCE-NN accelerator is an appropriate solution to ensure the scalability of the neural network while providing high-performance on-chip learning and recognition.

2.
Sensors (Basel) ; 23(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36772476

RESUMO

Recently, human-machine interfaces (HMI) that make life convenient have been studied in many fields. In particular, a hand gesture recognition (HGR) system, which can be implemented as a wearable system, has the advantage that users can easily and intuitively control the device. Among the various sensors used in the HGR system, the surface electromyography (sEMG) sensor is independent of the acquisition environment, easy to wear, and requires a small amount of data. Focusing on these advantages, previous sEMG-based HGR systems used several sensors or complex deep-learning algorithms to achieve high classification accuracy. However, systems that use multiple sensors are bulky, and embedded platforms with complex deep-learning algorithms are difficult to implement. To overcome these limitations, we propose an HGR system using a binarized neural network (BNN), a lightweight convolutional neural network (CNN), with one dry-type sEMG sensor, which is implemented on a field-programmable gate array (FPGA). The proposed HGR system classifies nine dynamic gestures that can be useful in real life rather than static gestures that can be classified relatively easily. Raw sEMG data collected from a dynamic gesture are converted into a spectrogram with information in the time-frequency domain and transferred to the classifier. As a result, the proposed HGR system achieved 95.4% classification accuracy, with a computation time of 14.1 ms and a power consumption of 91.81 mW.


Assuntos
Gestos , Redes Neurais de Computação , Humanos , Eletromiografia , Algoritmos , Reconhecimento Psicológico , Mãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA