RESUMO
BACKGROUND: Bed nets reduce malaria-related illness and deaths, by forming a protective barrier around people sleeping under them. When impregnated with long-lasting insecticide formulations they also repel or kill mosquitoes attempting to feed upon sleeping humans, and can even suppress entire populations of malaria vectors that feed predominantly upon humans. Nevertheless, an epidemiological study in 2012 demonstrated higher malaria prevalence among bed net users than non-users in urban Dar es Salaam, Tanzania. METHODS: Focus group discussions were conducted with women from four selected wards of Dar es Salaam city, focusing on four major themes relating to bed net use behaviours: (1) reasons for bed net use, (2) reasons for not using bed nets, (3) stimuli or reminders for people to use a bed net (4) perceived reasons for catching malaria while using a bed net. An analytical method by framework grouping of relevant themes was used address key issues of relevance to the study objectives. Codes were reviewed and grouped into categories and themes. RESULTS: All groups said the main reason for bed net use was protection against malaria. Houses with well-screened windows, with doors that shut properly, and that use insecticidal sprays against mosquitoes, were said not to use bed nets, while frequent attacks from malaria was the main stimulus for people to use bed nets. Various reasons were mentioned as potential reasons that compromise bed net efficacy, the most common of which were: (1) bed net sharing by two or more people, especially if one occupant tends to come to bed late at night, and does not tuck in the net 71%; (2) one person shares the bed but does not use the net, moving it away from the side on which s/he sleeps 68%; (3) ineffective usage habits, called ulalavi, in which a sprawling sleeper either touches the net while sleeping up against it or leaves a limb hanging outside of it 68%. Less common reasons mentioned included: (1) Small bed nets which become un-tucked at night (31%); (2) Bed nets with holes large enough to allow mosquitoes to pass (28%); and (3) Going to bed late after already being bitten outdoors (24%). CONCLUSIONS: Behaviours associated with bed net use like; bed sharing, bed net non compliant-bedfellow, sleeping pattern like ulalavi and some physical bed net attributes compromise its effectiveness and supposedly increase of malaria infection to bed net users. While some well-screened houses looked to instigate low malaria prevalence to non-bed net users.
Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Malária/epidemiologia , Controle de Mosquitos/métodos , Feminino , Humanos , Prevalência , Tanzânia/epidemiologiaRESUMO
BACKGROUND: Community-based service delivery is vital to the effectiveness, affordability and sustainability of vector control generally, and to labour-intensive larval source management (LSM) programmes in particular. CASE DESCRIPTION: The institutional evolution of a city-level, community-based LSM programme over 14 years in urban Dar es Salaam, Tanzania, illustrates how operational research projects can contribute to public health governance and to the establishment of sustainable service delivery programmes. Implementation, management and governance of this LSM programme is framed within a nested set of spatially-defined relationships between mosquitoes, residents, government and research institutions that build upward from neighbourhood to city and national scales. DISCUSSION AND EVALUATION: The clear hierarchical structure associated with vertical, centralized management of decentralized, community-based service delivery, as well as increasingly clear differentiation of partner roles and responsibilities across several spatial scales, contributed to the evolution and subsequent growth of the programme. CONCLUSIONS: The UMCP was based on the principle of an integrated operational research project that evolved over time as the City Council gradually took more responsibility for management. The central role of Dar es Salaam's City Council in coordinating LSM implementation enabled that flexibility; the institutionalization of management and planning in local administrative structures enhanced community-mobilization and funding possibilities at national and international levels. Ultimately, the high degree of program ownership by the City Council and three municipalities, coupled with catalytic donor funding and technical support from expert overseas partners have enabled establishment of a sustainable, internally-funded programme implemented by the National Ministry of Health and Social Welfare and supported by national research and training institutes.
Assuntos
Malária/prevenção & controle , Controle de Mosquitos/métodos , Controle de Mosquitos/organização & administração , Animais , Estudos de Casos e Controles , Humanos , Malária/epidemiologia , Tanzânia , População UrbanaRESUMO
BACKGROUND: Historically, environmental management has brought important achievements in malaria control and overall improvements of health conditions. Currently, however, implementation is often considered not to be cost-effective. A community-based environmental management for malaria control was conducted in Dar es Salaam between 2005 and 2007. After community sensitization, two drains were cleaned followed by maintenance. This paper assessed the impact of the intervention on community awareness, prevalence of malaria infection, and Anopheles larval presence in drains. METHODS: A survey was conducted in neighbourhoods adjacent to cleaned drains; for comparison, neighbourhoods adjacent to two drains treated with larvicides and two drains under no intervention were also surveyed. Data routinely collected by the Urban Malaria Control Programme were also used. Diverse impacts were evaluated through comparison of means, odds ratios (OR), logistic regression, and time trends calculated by moving averages. RESULTS: Individual awareness of health risks and intervention goals were significantly higher among sensitized neighbourhoods. A reduction in the odds of malaria infection during the post-cleaning period in intervention neighbourhoods was observed when compared to the pre-cleaning period (OR = 0.12, 95% CI 0.05-0.3, p < 0.001). During the post-cleaning period, a higher risk of infection (OR = 1.7, 95% CI 1.1-2.4, p = 0.0069) was observed in neighbourhoods under no intervention compared to intervention ones. Eighteen months after the initial cleaning, one of the drains was still clean due to continued maintenance efforts (it contained no waste materials and the water was flowing at normal velocity). A three-month moving average of the percentage of water habitats in that drain containing pupae and/or Anopheles larvae indicated a decline in larval density. In the other drain, lack of proper resources and local commitment limited success. CONCLUSION: Although environmental management was historically coordinated by authoritarian/colonial regimes or by industries/corporations, its successful implementation as part of an integrated vector management framework for malaria control under democratic governments can be possible if four conditions are observed: political will and commitment, community sensitization and participation, provision of financial resources for initial cleaning and structural repairs, and inter-sectoral collaboration. Such effort not only is expected to reduce malaria transmission, but has the potential to empower communities, improve health and environmental conditions, and ultimately contribute to poverty alleviation and sustainable development.
Assuntos
Meio Ambiente , Insetos Vetores , Malária/prevenção & controle , Controle de Mosquitos/métodos , Adolescente , Adulto , Animais , Monitoramento Ambiental/métodos , Monitoramento Epidemiológico , Feminino , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Larva/crescimento & desenvolvimento , Larva/parasitologia , Malária/epidemiologia , Malária/transmissão , Masculino , Pessoa de Meia-Idade , Prevalência , Características de Residência , Tanzânia/epidemiologia , Abastecimento de Água , Adulto JovemRESUMO
BACKGROUND: Malaria transmission in Africa occurs predominantly inside houses where the primary vectors prefer to feed. Human preference and investment in blocking of specific entry points for mosquitoes into houses was evaluated and compared with known entry point preferences of the mosquitoes themselves. METHODS: Cross-sectional household surveys were conducted in urban Dar es Salaam, Tanzania to estimate usage levels of available options for house proofing against mosquito entry, namely window screens, ceilings and blocking of eaves. These surveys also enabled evaluation of household expenditure on screens and ceilings and the motivation behind their installation. RESULTS: Over three quarters (82.8%) of the 579 houses surveyed in Dar es Salaam had window screens, while almost half (48.9%) had ceilings. Prevention of mosquito entry was cited as a reason for installation of window screens and ceilings by 91.4% (394/431) and 55.7% (127/228) of respondents, respectively, but prevention of malaria was rarely cited (4.3%, 22/508). The median cost of window screens was between US $ 21-30 while that of ceilings was between US $301-400. The market value of insecticide-treated nets, window screening and ceilings currently in use in the city was estimated as 2, 5 and 42 million US$. More than three quarters of the respondents that lacked them said it was too expensive to install ceilings (82.2%) or window screens (75.5%). CONCLUSION: High coverage and spending on screens and ceilings implies that these techniques are highly acceptable and excellent uptake can be achieved in urban settings like Dar es Salaam. Effective models for promotion and subsidization should be developed and evaluated, particularly for installation of ceilings that prevent entry via the eaves, which are the most important entry point for mosquitoes that cause malaria, a variety of neglected tropical diseases and the nuisance which motivates uptake.
Assuntos
Transmissão de Doença Infecciosa/prevenção & controle , Malária/prevenção & controle , Controle de Mosquitos/métodos , Controle de Mosquitos/estatística & dados numéricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tanzânia , População Urbana , Adulto JovemRESUMO
BACKGROUND: Mosquito sampling methods are essential for monitoring and evaluating malaria vector control interventions. In urban Dar es Salaam, human landing catch (HLC) is the only method sufficiently sensitive for monitoring malaria-transmitting Anopheles. HLC is labour intensive, cumbersome, hazardous, and requires such intense supervision that is difficulty to sustain on large scales. METHODS: Novel tent traps were developed as alternatives to HLC. The Furvela tent, designed in Mozambique, incorporates a CDC Light trap (LT) components, while two others from Ifakara, Tanzania (designs A and B) require no electricity or moving parts. Their sensitivity for sampling malaria vectors was compared with LT and HLC over a wide range of vector abundances in rural and urban settings in Tanzania, with endophagic and exophagic populations, respectively, using randomised Latin-square and cross- over experimental designs. RESULTS: The sensitivity of LTs was greater than HLC while the opposite was true of Ifakara tent traps (crude mean catch of An. gambiae sensu lato relative to HLC = 0.28, 0.65 and 1.30 for designs A, B and LT in a rural setting and 0.32 for design B in an urban setting). However, Ifakara B catches correlated far better to HLC (r2 = 0.73, P < 0.001) than any other method tested (r2 = 0.04, P = 0.426 and r2 = 0.19, P = 0.006 for Ifakara A and LTs respectively). Only Ifakara B in a rural setting with high vector density exhibited constant sampling efficiency relative to HLC. The relative sensitivity of Ifakara B increased as vector densities decreased in the urban setting and exceeded that of HLC at the lowest densities. None of the tent traps differed from HLC in terms of the proportions of parous mosquitoes (P >or= 0.849) or An. gambiae s.l. sibling species (P >or= 0.280) they sampled but both Ifakara A and B designs failed to reduce the proportion of blood-fed mosquitoes caught (Odds ratio [95% Confidence Interval] = 1.6 [1.2, 2.1] and 1.0 [0.8, 1.2], P = 0.002 and 0.998, respectively), probably because of operator exposure while emptying the trap each morning. CONCLUSION: The Ifakara B trap may have potential for monitoring and evaluating a variety of endophagic and exophagic Afrotropical malaria vectors, particularly at low but epidemiologically relevant population densities. However, operator exposure to mosquito bites remains a concern so additional modifications or protective measures will be required before this design can be considered for widespread, routine use.
Assuntos
Anopheles , Monitoramento Ambiental/instrumentação , Controle de Insetos/métodos , Malária/transmissão , Controle de Mosquitos/métodos , Animais , Roupas de Cama, Mesa e Banho , Intervalos de Confiança , Estudos Cross-Over , Humanos , Mordeduras e Picadas de Insetos/prevenção & controle , Modelos Logísticos , Malária/prevenção & controle , Controle de Mosquitos/instrumentação , Razão de Chances , População Rural , Sensibilidade e Especificidade , Tanzânia , População UrbanaRESUMO
BACKGROUND: Frequent, sensitive and accurate sampling of Anopheles mosquitoes is a prerequisite for effective management of malaria vector control programmes. The most reliable existing means to measure mosquito density is the human landing catch (HLC). However, the HLC technique raises major ethical concerns because of the necessity to expose humans to vectors of malaria and a variety of other pathogens. Furthermore, it is a very arduous undertaking that requires intense supervision, which is severely limiting in terms of affordability and sustainability. METHODS: A community-based, mosquito sampling protocol, using the Ifakara tent trap-B (ITT-B) and standardized resting boxes (SRB), was developed and evaluated in terms of the number and sample composition of mosquitoes caught by each, compared to rigorously controlled HLC. Mosquitoes were collected once and three times every week by the HLC and the alternative methods, respectively, in the same time and location. RESULTS: Overall, the three traps caught 44,848 mosquitoes. The ITT-B, HLC and SRB caught 168, 143 and 46 Anopheles gambiae s.l. as well as 26,315, 13,258 and 4,791 Culex species respectively. The ITT-B was three- and five-times cheaper than the HLC per mosquito caught for An. gambiae and Cx. Species, respectively. Significant correlations between the numbers caught by HLC and ITT-B were observed for both An. gambiae s.l. (P < 0.001) and Cx. species (P = 0.003). Correlation between the catches with HLC and SRB were observed for Cx. species (P < 0.001) but not An. gambiae s.l. (P = 0.195), presumably because of the low density of the latter. Neither ITT-B nor SRB exhibited any obvious density dependence for sampling the two species. CONCLUSION: SRBs exhibited poor sensitivity for both mosquito taxa and are not recommended in this setting. However, this protocol is affordable and effective for routine use of the ITT-B under programmatic conditions. Nevertheless, it is recommended that the trap and the protocol be evaluated further at full programmatic scales to establish effectiveness under fully representative conditions of routine practice.
Assuntos
Anopheles/classificação , Culex/classificação , Controle de Mosquitos/instrumentação , Densidade Demográfica , Animais , Feminino , Humanos , Sensibilidade e Especificidade , TanzâniaRESUMO
BACKGROUND: As the population of Africa rapidly urbanizes, large populations could be protected from malaria by controlling aquatic stages of mosquitoes if cost-effective and scalable implementation systems can be designed. METHODS: A recently initiated Urban Malaria Control Programme in Dar es Salaam delegates responsibility for routine mosquito control and surveillance to modestly-paid community members, known as Community-Owned Resource Persons (CORPs). New vector surveillance, larviciding and management systems were designed and evaluated in 15 city wards to allow timely collection, interpretation and reaction to entomologic monitoring data using practical procedures that rely on minimal technology. After one year of baseline data collection, operational larviciding with Bacillus thuringiensis var. israelensis commenced in March 2006 in three selected wards. RESULTS: The procedures and staff management systems described greatly improved standards of larval surveillance relative to that reported at the outset of this programme. In the first year of the programme, over 65,000 potential Anopheles habitats were surveyed by 90 CORPs on a weekly basis. Reaction times to vector surveillance at observations were one day, week and month at ward, municipal and city levels, respectively. One year of community-based larviciding reduced transmission by the primary malaria vector, Anopheles gambiae s.l., by 31% (95% C.I. = 21.6-37.6%; p = 0.04). CONCLUSION: This novel management, monitoring and evaluation system for implementing routine larviciding of malaria vectors in African cities has shown considerable potential for sustained, rapidly responsive, data-driven and affordable application. Nevertheless, the true programmatic value of larviciding in urban Africa can only be established through longer-term programmes which are stably financed and allow the operational teams and management infrastructures to mature by learning from experience.
Assuntos
Pesquisa sobre Serviços de Saúde , Malária/prevenção & controle , Controle de Mosquitos/métodos , Animais , Anopheles/microbiologia , Bacillus thuringiensis/fisiologia , Ecossistema , Eficiência Organizacional , Humanos , Larva/microbiologia , Malária/transmissão , Controle Biológico de Vetores/métodos , TanzâniaRESUMO
BACKGROUND: Successful malaria vector control depends on understanding behavioural interactions between mosquitoes and humans, which are highly setting-specific and may have characteristic features in urban environments. Here mosquito biting patterns in Dar es Salaam, Tanzania are examined and the protection against exposure to malaria transmission that is afforded to residents by using an insecticide-treated net (ITN) is estimated. METHODS: Mosquito biting activity over the course of the night was estimated by human landing catch in 216 houses and 1,064 residents were interviewed to determine usage of protection measures and the proportion of each hour of the night spent sleeping indoors, awake indoors, and outdoors. RESULTS: Hourly variations in biting activity by members of the Anopheles gambiae complex were consistent with classical reports but the proportion of these vectors caught outdoors in Dar es Salaam was almost double that of rural Tanzania. Overall, ITNs confer less protection against exophagic vectors in Dar es Salaam than in rural southern Tanzania (59% versus 70%). More alarmingly, a biting activity maximum that precedes 10 pm and much lower levels of ITN protection against exposure (38%) were observed for Anopheles arabiensis, a vector of modest importance locally, but which predominates transmission in large parts of Africa. CONCLUSION: In a situation of changing mosquito and human behaviour, ITNs may confer lower, but still useful, levels of personal protection which can be complemented by communal transmission suppression at high coverage. Mosquito-proofing houses appeared to be the intervention of choice amongst residents and further options for preventing outdoor transmission include larviciding and environmental management.
Assuntos
Mordeduras e Picadas de Insetos/prevenção & controle , Malária/prevenção & controle , Controle de Mosquitos/métodos , Animais , Humanos , Densidade Demográfica , TanzâniaRESUMO
BACKGROUND: Half of the population of Africa will soon live in towns and cities where it can be protected from malaria by controlling aquatic stages of mosquitoes. Rigorous but affordable and scaleable methods for mapping and managing mosquito habitats are required to enable effective larval control in urban Africa. METHODS: A simple community-based mapping procedure that requires no electronic devices in the field was developed to facilitate routine larval surveillance in Dar es Salaam, Tanzania. The mapping procedure included (1) community-based development of sketch maps and (2) verification of sketch maps through technical teams using laminated aerial photographs in the field which were later digitized and analysed using Geographical Information Systems (GIS). RESULTS: Three urban wards of Dar es Salaam were comprehensively mapped, covering an area of 16.8 km2. Over thirty percent of this area were not included in preliminary community-based sketch mapping, mostly because they were areas that do not appear on local government residential lists. The use of aerial photographs and basic GIS allowed rapid identification and inclusion of these key areas, as well as more equal distribution of the workload of malaria control field staff. CONCLUSION: The procedure developed enables complete coverage of targeted areas with larval control through comprehensive spatial coverage with community-derived sketch maps. The procedure is practical, affordable, and requires minimal technical skills. This approach can be readily integrated into malaria vector control programmes, scaled up to towns and cities all over Tanzania and adapted to urban settings elsewhere in Africa.
Assuntos
Culicidae , Sistemas de Informação Geográfica , Controle de Mosquitos/métodos , Topografia Médica/métodos , Animais , Ecossistema , Monitoramento Ambiental/métodos , Monitoramento Epidemiológico , Humanos , Insetos Vetores , Larva , Malária/epidemiologia , Malária/prevenção & controle , Malária/transmissão , Tanzânia/epidemiologia , População UrbanaRESUMO
BACKGROUND: Integrated vector management (IVM) for malaria control requires ecological skills that are very scarce and rarely applied in Africa today. Partnerships between communities and academic ecologists can address this capacity deficit, modernize the evidence base for such approaches and enable future scale up. METHODS: Community-based IVM programmes were initiated in two contrasting settings. On Rusinga Island, Western Kenya, community outreach to a marginalized rural community was achieved by University of Nairobi through a community-based organization. In Dar es Salaam, Tanzania, Ilala Municipality established an IVM programme at grassroots level, which was subsequently upgraded and expanded into a pilot scale Urban Malaria Control Programme with support from national academic institutes. RESULTS: Both programmes now access relevant expertise, funding and policy makers while the academic partners benefit from direct experience of community-based implementation and operational research opportunities. The communities now access up-to-date malaria-related knowledge and skills for translation into local action. Similarly, the academic partners have acquired better understanding of community needs and how to address them. CONCLUSION: Until sufficient evidence is provided, community-based IVM remains an operational research activity. Researchers can never directly support every community in Africa so community-based IVM strategies and tactics will need to be incorporated into undergraduate teaching programmes to generate sufficient numbers of practitioners for national scale programmes. Academic ecologists at African institutions are uniquely positioned to enable the application of practical environmental and entomological skills for malaria control by communities at grassroots level and should be supported to fulfil this neglected role.
Assuntos
Anopheles , Planejamento em Saúde Comunitária/organização & administração , Promoção da Saúde/organização & administração , Insetos Vetores , Malária/prevenção & controle , Controle de Mosquitos/métodos , África , Animais , Planejamento em Saúde Comunitária/economia , Planejamento em Saúde Comunitária/métodos , Participação da Comunidade/métodos , Humanos , Malária/transmissão , Vigilância da População , População Rural , População UrbanaRESUMO
BACKGROUND: As the population of Africa rapidly urbanizes it may be possible to protect large populations from malaria by controlling aquatic stages of mosquitoes. Here we present a baseline evaluation of the ability of community members to detect mosquito larval habitats with minimal training and supervision in the first weeks of an operational urban malaria control program. METHODS: The Urban Malaria Control Programme of Dar es Salaam recruited and provided preliminary training to teams of Community-Owned Resource Persons (CORPs) who performed weekly surveys of mosquito breeding sites. Two trained mosquito biologists accompanied each of these teams for one week and evaluated the sensitivity of this system for detecting potential Anopheles habitats. RESULTS: Overall, 42.4% of 986 habitats surveyed by an inspection team had previously been identified by CORPs. Agricultural habitats were detected less often than other habitats (30.8% detected, Odds Ratio [95%CI] = 0.46 [0.29-0.73], P = 0.001). Non-agricultural artificial habitats were less suitable than other habitats (29.3% occupancy, OR = 0.69 [0.46-1.03], P = 0.066) but still constituted 45% (169/289) of occupied habitats because of their abundance (51 % of all habitats). CONCLUSION: The levels of coverage achieved by modestly trained and supported CORPs at the start of the Dar es Salaam UMCP were insufficient to enable effective suppression of malaria transmission through larval control. Further operational research is required to develop surveillance systems that are practical, affordable, effective and acceptable so that community-based integrated vector management can be implemented in cities across Africa.
Assuntos
Meio Ambiente , Malária/prevenção & controle , Controle de Mosquitos/métodos , Vigilância da População/métodos , Características de Residência , Água/parasitologia , Animais , Anopheles/crescimento & desenvolvimento , Anopheles/parasitologia , Agentes Comunitários de Saúde , Humanos , Insetos Vetores , Larva/crescimento & desenvolvimento , Larva/parasitologia , Malária/epidemiologia , Malária/parasitologia , Tanzânia/epidemiologia , UrbanizaçãoRESUMO
BACKGROUND: Dar es Salaam has an extensive drain network, mostly with inadequate water flow, blocked by waste, causing flooding after rainfall. The presence of Anopheles and Culex larvae is common, which is likely to impact the transmission of lymphatic filariasis and malaria by the resulting adult mosquito populations. However, the importance of drains as larval habitats remains unknown. METHODOLOGY: Data on mosquito larval habitats routinely collected by the Urban Malaria Control Program (UMCP) and a special drain survey conducted in 2006 were used to obtain a typology of habitats. Focusing on drains, logistic regression was used to evaluate potential factors impacting the presence of mosquito larvae. Spatial variation in the proportion of habitats that contained larvae was assessed through the local Moran's I indicator of spatial association. PRINCIPAL FINDINGS: More than 70% of larval habitats in Dar es Salaam were human-made. Aquatic habitats associated with agriculture had the highest proportion of Anopheles larvae presence and the second highest of Culex larvae presence. However, the majority of aquatic habitats were drains (42%), and therefore, 43% (1,364/3,149) of all culicine and 33% (320/976) of all anopheline positive habitats were drains. Compared with drains where water was flowing at normal velocity, the odds of finding Anopheles and Culex larvae were 8.8 and 6.3 (p<0.001) times larger, respectively, in drains with stagnant water. There was a positive association between vegetation and the presence of mosquito larvae (p<0.001). The proportion of habitats with mosquito larvae was spatially correlated. CONCLUSION: Restoring and maintaining drains in Dar es Salaam has the potential to eliminate more than 40% of all potential mosquito larval habitats that are currently treated with larvicides by the UMCP. The importance of human-made larval habitats for both lymphatic filariasis and malaria vectors underscores the need for a synergy between on-going control efforts of those diseases.
Assuntos
Anopheles/crescimento & desenvolvimento , Culex/crescimento & desenvolvimento , Ecossistema , Agricultura , Animais , Biologia de Ecossistemas de Água Doce , Humanos , Larva/crescimento & desenvolvimento , Controle de Mosquitos/métodos , TanzâniaRESUMO
A cross-sectional survey of agricultural areas, combined with routinely monitored mosquito larval information, was conducted in urban Dar es Salaam, Tanzania, to investigate how agricultural and geographical features may influence the presence of Anopheles larvae. Data were integrated into a geographical information systems framework, and predictors of the presence of Anopheles larvae in farming areas were assessed using multivariate logistic regression with independent random effects. It was found that more than 5% of the study area (total size 16.8 km2) was used for farming in backyard gardens and larger open spaces. The proportion of habitats containing Anopheles larvae was 1.7 times higher in agricultural areas compared to other areas (95% confidence interval = 1.56-1.92). Significant geographic predictors of the presence of Anopheles larvae in gardens included location in lowland areas, proximity to river, and relatively impermeable soils. Agriculture-related predictors comprised specific seedbed types, mid-sized gardens, irrigation by wells, as well as cultivation of sugar cane or leafy vegetables. Negative predictors included small garden size, irrigation by tap water, rainfed production and cultivation of leguminous crops or fruit trees. Although there was an increased chance of finding Anopheles larvae in agricultural sites, it was found that breeding sites originated by urban agriculture account for less than a fifth of all breeding sites of malaria vectors in Dar es Salaam. It is suggested that strategies comprising an integrated malaria control effort in malaria-endemic African cities include participatory involvement of farmers by planting shade trees near larval habitats.
Assuntos
Anopheles , Ecossistema , Jardinagem , Contagem de Ovos de Parasitas , População Urbana , Animais , Estudos Transversais , Larva , Modelos Logísticos , TanzâniaRESUMO
BACKGROUND: Malaria control in Africa is most tractable in urban settlements yet most research has focused on rural settings. Elimination of malaria transmission from urban areas may require larval control strategies that complement adult mosquito control using insecticide-treated nets or houses, particularly where vectors feed outdoors. METHODS AND FINDINGS: Microbial larvicide (Bacillus thuringiensis var. israelensis (Bti)) was applied weekly through programmatic, non-randomized community-based, but vertically managed, delivery systems in urban Dar es Salaam, Tanzania. Continuous, randomized cluster sampling of malaria infection prevalence and non-random programmatic surveillance of entomological inoculation rate (EIR) respectively constituted the primary and secondary outcomes surveyed within a population of approximately 612,000 residents in 15 fully urban wards covering 55 km(2). Bti application for one year in 3 of those wards (17 km(2) with 128,000 residents) reduced crude annual transmission estimates (Relative EIR [95% Confidence Interval] = 0.683 [0.491-0.952], P = 0.024) but program effectiveness peaked between July and September (Relative EIR [CI] = 0.354 [0.193 to 0.650], P = 0.001) when 45% (9/20) of directly observed transmission events occurred. Larviciding reduced malaria infection risk among children < or =5 years of age (OR [CI] = 0.284 [0.101 to 0.801], P = 0.017) and provided protection at least as good as personal use of an insecticide treated net (OR [CI] = 0.764 [0.614-0.951], P = 0.016). CONCLUSIONS: In this context, larviciding reduced malaria prevalence and complemented existing protection provided by insecticide-treated nets. Larviciding may represent a useful option for integrated vector management in Africa, particularly in its rapidly growing urban centres.