RESUMO
The effect of radiation therapy on tumor vasculature has long been a subject of debate. Increased oxygenation and perfusion have been documented during radiation therapy. Conversely, apoptosis of endothelial cells in irradiated tumors has been proposed as a major contributor to tumor control. To examine these contradictions, we use multiphoton microscopy in two murine tumor models: MC38, a highly vascularized, and B16F10, a moderately vascularized model, grown in transgenic mice with tdTomato-labeled endothelium before and after a single (15 Gy) or fractionated (5 × 3 Gy) dose of radiation. Unexpectedly, even these high doses lead to little structural change of the perfused vasculature. Conversely, non-perfused vessels and blind ends are substantially impaired after radiation accompanied by apoptosis and reduced proliferation of their endothelium. RNAseq analysis of tumor endothelial cells confirms the modification of gene expression in apoptotic and cell cycle regulation pathways after irradiation. Therefore, we conclude that apoptosis of tumor endothelial cells after radiation does not impair vascular structure.
Assuntos
Células Endoteliais , Neoplasias , Animais , Apoptose , Células Endoteliais/metabolismo , Endotélio/metabolismo , Camundongos , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/radioterapia , Radiação IonizanteRESUMO
PURPOSE: Multidrug resistance (MDR) impedes cancer treatment. Two efflux transporters from the ATP-binding cassette (ABC) family, ABCB1 and ABCG2, may contribute to MDR by restricting the entry of therapeutic drugs into tumor cells. Although a higher expression of these transporters has been correlated with an unfavorable response to chemotherapy, transporter expression does not necessarily correlate with function. In this study, we characterized the pharmacological properties of [18F]AVT-011, a new PET radiotracer for imaging transporter-mediated MDR in tumors. METHODS: AVT-011 was radiolabeled with 18F and evaluated with PET imaging in preclinical models. Transport of [18F]AVT-011 by ABCB1 and/or ABCG2 was assessed by measuring its uptake in the brains of wild-type, Abcb1a/b-/-, and Abcg2-/- mice at baseline and after administration of the ABCB1 inhibitor tariquidar (n = 5/group). Metabolism and biodistribution of [18F]AVT-011 were also measured. To measure ABCB1 function in tumors, we performed PET experiments using both [18F]AVT-011 and [18F]FDG in mice bearing orthotopic breast tumors (n = 7-10/group) expressing clinically relevant levels of ABCB1. RESULTS: At baseline, brain uptake was highest in Abcb1a/b-/- mice. After tariquidar administration, brain uptake increased 3-fold and 8-fold in wild-type and Abcg2-/- mice, respectively, but did not increase further in Abcb1a/b-/- mice. At 30 min after injection, the radiotracer was > 90% in its parent form and had highest uptake in organs of the hepatobiliary system. Compared with that in drug-sensitive tumors, uptake of [18F]AVT-011 was 32% lower in doxorubicin-resistant tumors with highest ABCB1 expression and increased by 40% with tariquidar administration. Tumor uptake of [18F]FDG did not significantly differ among groups. CONCLUSION: [18F]AVT-011 is a dual ABCB1/ABCG2 substrate radiotracer that can quantify transporter function at the blood-brain barrier and in ABCB1-expressing tumors, making it potentially suitable for clinical imaging of ABCB1-mediated MDR in tumors.
Assuntos
Resistência a Múltiplos Medicamentos , Tomografia por Emissão de Pósitrons , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Camundongos , Distribuição TecidualRESUMO
OBJECTIVE: The role of neuroinflammation in mesial temporal lobe epilepsy (MTLE), and how it relates to drug resistance, remains unclear. Expression levels of the inflammatory enzymes cyclooxygenase (COX)-1 and COX-2 have been found to be increased in animal models of epilepsy. Knowing the cellular expression of COX-1 and COX-2 is the key to understanding their functional role; however, only 3 studies have investigated COX-2 expression in epilepsy in humans, and there are no reports on COX-1. In addition, previous studies have shown that certain inflammatory proteins up-regulate ATP binding cassette (ABC) transporter expression (thought to be responsible for drug resistance), but this relationship remains unclear in human tissue. This study sought to measure the expression of COX-1, COX-2, and translocator protein 18 kDa (TSPO, an inflammation biomarker acting as a positive control), as well as ABC transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), in brain tissue samples from people with drug-resistant MTLE. METHODS: Formalin-fixed paraffin-embedded surgical brain tissue was obtained from 33 patients with drug-resistant MTLE. Multiplex immunofluorescence was used to quantify the expression and distribution of COX-1, COX-2, TSPO, P-gp, and BCRP. RESULTS: COX-1 was expressed in microglia, and COX-2 and TSPO were expressed in microglia and neurons. BCRP density correlated significantly with TSPO density, suggesting a potential relationship between inflammatory markers and efflux transporters. SIGNIFICANCE: To the best of our knowledge, this study is the first to measure the cellular expression of COX-1, COX-2, and TSPO in microglia, astrocytes, and neurons in surgical brain tissue samples from patients with drug-resistant MTLE. Further research is needed to determine the effects of the COX inflammatory pathway in epilepsy, and how it relates to the expression of the ABC transporters P-gp and BCRP.
Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Epilepsia Resistente a Medicamentos/metabolismo , Regulação da Expressão Gênica/fisiologia , Receptores de GABA/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adolescente , Adulto , Epilepsia Resistente a Medicamentos/patologia , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Feminino , Humanos , Masculino , Microglia/metabolismo , Pessoa de Meia-Idade , Proteínas de Neoplasias/metabolismo , Neurônios/metabolismo , Estatísticas não Paramétricas , Adulto JovemRESUMO
In this work, we present a pedagogical tumour growth example, in which we apply calibration and validation techniques to an uncertain, Gompertzian model of tumour spheroid growth. The key contribution of this article is the discussion and application of these methods (that are not commonly employed in the field of cancer modelling) in the context of a simple model, whose deterministic analogue is widely known within the community. In the course of the example, we calibrate the model against experimental data that are subject to measurement errors, and then validate the resulting uncertain model predictions. We then analyse the sensitivity of the model predictions to the underlying measurement model. Finally, we propose an elementary learning approach for tuning a threshold parameter in the validation procedure in order to maximize predictive accuracy of our validated model.
Assuntos
Teorema de Bayes , Calibragem , Neoplasias , Humanos , Modelos Teóricos , Prognóstico , IncertezaRESUMO
Since its development, tariquidar (TQR; XR9576; N-[2-[[4-[2-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]phenyl]carbamoyl]-4,5-dimethoxyphenyl]quinoline-3-carboxamide) has been widely regarded as one of the more potent inhibitors of P-glycoprotein (P-gp), an efflux transporter of the ATP-binding cassette (ABC) transporter family. A third-generation inhibitor, TQR exhibits high affinity for P-gp, although it is also a substrate of another ABC transporter, breast cancer resistance protein (BCRP). Recently, several studies have questioned the mechanism by which TQR interfaces with P-gp, suggesting that TQR is a substrate for P-gp instead of a noncompetitive inhibitor. We investigated TQR and its interaction with human and mouse P-gp to determine if TQR is a substrate of P-gp in vitro. To address these questions, we used multiple in vitro transporter assays, including cytotoxicity, flow cytometry, accumulation, ATPase, and transwell assays. A newly generated BCRP cell line was used as a positive control that demonstrates TQR-mediated transport. Based on our results, we conclude that TQR is a potent inhibitor of both human and mouse P-gp and shows no signs of being a substrate at the concentrations tested. These in vitro data further support our position that the in vivo uptake of [(11)C]TQR into the brain can be explained by its high-affinity binding to P-gp and by it being a substrate of BCRP, followed by amplification of the brain signal by ionic trapping in acidic lysosomes.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Quinolinas/metabolismo , Quinolinas/farmacologia , Células 3T3 , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular , Linhagem Celular Transformada , Humanos , Células KB , Células MCF-7 , CamundongosRESUMO
The radiotracer [(11)C]N-desmethyl-loperamide (dLop) images the in vivo function of P-glycoprotein (P-gp), a transporter that blocks the entry of drugs that are substrates into brain. When P-gp is inhibited, [(11)C]dLop, a potent opiate agonist, enters and becomes trapped in the brain. This trapping is beneficial from an imaging perspective, because it amplifies the PET signal, essentially by accumulating radioactivity over time. As we previously demonstrated that this trapping was not caused by binding to opiate receptors, we examined whether [(11)C]dLop, a weak base, is ionically trapped in acidic lysosomes. To test this hypothesis, we measured [(3)H]dLop accumulation in human cells by using lysosomotropics. Because the in vivo trapping of dLop was seen after P-gp inhibition, we also measured [(3)H]dLop uptake in P-gp-expressing cells treated with the P-gp inhibitor tariquidar. All lysosomotropics decreased [(3)H]dLop accumulation by at least 50%. In P-gp-expressing cells, tariquidar (and another P-gp inhibitor) surprisingly decreased [(3)H]dLop uptake. Consequently, we measured [(11)C]dLop uptake before and after tariquidar preadministration in lysosome-rich organs of P-gp KO mice and humans. After tariquidar pretreatment in both species, radioactivity uptake in these organs decreased by 35% to 40%. Our results indicate that dLop is trapped in lysosomes and that tariquidar competes with dLop for lysosomal accumulation in vitro and in vivo. Although tariquidar and dLop compete for lysosomal trapping in the periphery, such competition does not occur in brain because tariquidar has negligible entry into brain. In summary, tariquidar and [(11)C]dLop can be used in combination to selectively measure the function of P-gp at the blood-brain barrier.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica , Loperamida/análogos & derivados , Lisossomos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Trítio/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Linhagem Celular Tumoral , Humanos , Marcação por Isótopo/métodos , Loperamida/farmacologia , Camundongos , Quinolinas/farmacologia , RadiografiaRESUMO
Immunotherapy has revolutionized cancer treatment but its efficacy depends on a robust immune response in the tumor. Silencing of the tumor suppressor p53 is common in tumors and can affect the recruitment and activation of different immune cells, leading to immune evasion and poor therapy response. We found that the p53 activating stapled peptide MDM2/MDMX inhibitor Sulanemadlin (ALRN-6924) inhibited p53 wild-type cancer cell growth in vitro and in vivo. In mice carrying p53 wild-type CT26.WT tumors, monotherapy with the PD-1 inhibitor DX400 or Sulanemadlin delayed tumor doubling time by 50% and 37%, respectively, while combination therapy decreased tumor doubling time by 93% leading to an increased median survival time. Sulanemadlin treatment led to increased immunogenicity and combination treatment with PD-1 inhibition resulted in an increased tumor infiltration of lymphocytes. This combination treatment strategy could potentially turn partial responders into responders of immunotherapy, expanding the patient target group for PD-1-targeting immunotherapy.
RESUMO
Efflux transporters located at the blood-brain barrier, such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), regulate the passage of many drugs in and out of the brain. Changes in the function and density of these proteins, in particular P-gp, may play a role in several neurological disorders. Several radioligands have been developed for measuring P-gp function at the blood-brain barrier of human subjects with positron emission tomography (PET). However, attempts to measure P-gp density with radiolabeled inhibitors that bind to these proteins in vivo have not thus far provided useful, quantifiable PET signals. Herein, we argue that not only the low density of transporters in the brain as a whole but also their very high density in brain capillaries act to lower the concentration of ligand in the plasma and thereby contribute to absent or low signals in PET studies of P-gp density. Our calculations, based on published data and theoretical approximations, estimate that whole brain densities of many efflux transporters at the blood-brain barrier range from 0.04 to 5.19 nM. We conclude that the moderate affinities (>5 nM) of currently labeled inhibitors may not allow measurement of efflux transporter density at the blood-brain barrier, and inhibitors with substantially higher affinity will be needed for density imaging of P-gp and other blood-brain barrier transporters.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Encéfalo/metabolismo , HumanosRESUMO
Activation of p53 by small molecule MDM2 inhibitors can induce cell cycle arrest or death in p53 wildtype cancer cells. However, cancer cells exposed to hypoxia can develop resistance to other small molecules, such as chemotherapies, that activate p53. Here, we evaluated whether hypoxia could render cancer cells insensitive to two MDM2 inhibitors with different potencies, nutlin-3a and navtemadlin. Inhibitor efficacy and potency were evaluated under short-term hypoxic conditions in human and mouse cancer cells expressing different p53 genotypes (wild-type, mutant, or null). Treatment of wild-type p53 cancer cells with MDM2 inhibitors reduced cell growth by > 75% in hypoxia through activation of the p53-p21 signaling pathway; no inhibitor-induced growth reduction was observed in hypoxic mutant or null p53 cells except at very high concentrations. The concentration of inhibitors needed to induce the maximal p53 response was not significantly different in hypoxia compared to normoxia. However, inhibitor efficacy varied by species and by cell line, with stronger effects at lower concentrations observed in human cell lines than in mouse cell lines grown as 2D and 3D cultures. Together, these results indicate that MDM2 inhibitors retain efficacy in hypoxia, suggesting they could be useful for targeting acutely hypoxic cancer cells.
Assuntos
Antineoplásicos , Neoplasias , Humanos , Camundongos , Animais , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Antineoplásicos/farmacologia , Hipóxia/genética , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/genéticaRESUMO
The process of sprouting angiogenesis can be measured in vitro using endothelial cells in sprouting assays such as the fibrin bead assay and the spheroid-based assay. While the technical aspects of these sprouting assays have been well-optimized, the analysis aspects have been limited to manual methods, which can be time-consuming and difficult to reproduce. Here, we developed an automated analysis tool called AQuTAS to quantify sprouting parameters from the spheroid-based sprouting assay. We trained and validated the algorithm on two subsets of data, and tested its sensitivity by measuring changes in sprouting parameters over a range of concentrations of pro- and antiangiogenic compounds. Our results demonstrate that the algorithm detects known differences in sprouting parameters in endothelial spheroids treated with pro- and antiangiogenic compounds. Moreover, it is sensitive to biological changes that are ≥40%. Among the five quantified parameters, cumulative sprout length is likely the most discriminative parameter for measuring differences in sprouting behavior because it had the highest effect size (>1.5 Cohen's d). In summary, we have generated an automated tool that quantifies sprouting parameters from the spheroid-based assay in a reproducible and sensitive manner.
RESUMO
The tumor suppressor protein p53 is mutated in close to 50% of human tumors and is dysregulated in many others, for instance by silencing or loss of p14ARF. Under steady-state conditions, the two E3 ligases MDM2/MDM4 interact with and inhibit the transcriptional activity of p53. Inhibition of p53-MDM2/4 interaction to reactivate p53 in tumors with wild-type (WT) p53 has therefore been considered a therapeutic strategy. Moreover, studies indicate that p53 reactivation may synergize with radiation and increase tumor immunogenicity. In vivo studies of most MDM2 inhibitors have utilized immunodeficient xenograft mouse models, preventing detailed studies of action of these molecules on the immune response. The mouse melanoma cell line B16-F10 carries functional, WT p53 but does not express the MDM2 regulator p19ARF. In this study, we tested a p53-MDM2 protein-protein interaction inhibitor, the small molecule Navtemadlin, which is currently being tested in phase II clinical trials. Using mass spectrometry-based proteomics and imaging flow cytometry, we identified specific protein expression patterns following Navtemadlin treatment of B16-F10 melanoma cells compared with their p53 CRISPR-inactivated control cells. In vitro, Navtemadlin induced a significant, p53-dependent, growth arrest but little apoptosis in B16-F10 cells. When combined with radiotherapy, Navtemadlin showed synergistic effects and increased apoptosis. In vivo, Navtemadlin treatment significantly reduced the growth of B16-F10 melanoma cells implanted in C57Bl/6 mice. Our data highlight the utility of a syngeneic B16-F10 p53+/+ mouse melanoma model for assessing existing and novel p53-MDM2/MDM4 inhibitors and in identifying new combination therapies that can efficiently eliminate tumors in vivo. Significance: The MDM2 inhibitor Navtemadlin arrests mouse tumor growth and potentiates radiotherapy. Our results support a threshold model for apoptosis induction that requires a high, prolonged p53 signaling for cancer cells to become apoptotic.
Assuntos
Antineoplásicos , Melanoma Experimental , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/metabolismo , Melanoma Experimental/tratamento farmacológico , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ciclo Celular/metabolismoRESUMO
Intratumoural heterogeneity (ITH) contributes to local recurrence following radiotherapy in prostate cancer. Recent studies also show that ecological interactions between heterogeneous tumour cell populations can lead to resistance in chemotherapy. Here, we evaluated whether interactions between heterogenous populations could impact growth and response to radiotherapy in prostate cancer. Using mixed 3D cultures of parental and radioresistant populations from two prostate cancer cell lines and a predator-prey mathematical model to investigate various types of ecological interactions, we show that reciprocal interactions between heterogeneous populations enhance overall growth and reduce radiation sensitivity. The type of interaction influences the time of regrowth after radiation, and, at the population level, alters the survival and cell cycle of each population without eliminating either one. These interactions can arise from oxygen constraints and from cellular cross-talk that alter the tumour microenvironment. These findings suggest that ecological-type interactions are important in radiation response and could be targeted to reduce local recurrence.
Assuntos
Modelos Biológicos , Recidiva Local de Neoplasia/etiologia , Neoplasias da Próstata , Tolerância a Radiação , Linhagem Celular Tumoral , Humanos , Masculino , Esferoides CelularesRESUMO
UNLABELLED: Ten percent of humans lack specific binding of [(11)C]PBR28 to 18 kDa translocator protein (TSPO), a biomarker for inflammation. "Non-binders" have not been reported using another TSPO radioligand, [(11)C]-(R)-PK 11195, despite its use for more than two decades. This study asked two questions: (1) What is the cause of non-binding to PBR28? and (2) Why has this phenomenon not been reported using [(11)C]-(R)-PK 11195? METHODS: Five binders and five non-binders received whole-body imaging with both [(11)C]-(R)-PK 11195 and [(11)C]PBR28. In vitro binding was performed using leukocyte membranes from binders and non-binders and the tritiated versions of the ligand. Rhesus monkeys were imaged with [(11)C]-(R)-PK 11195 at baseline and after blockade of TSPOs. RESULTS: Using [(11)C]PBR28, uptake in all five organs with high densities of TSPO (lung, heart, brain, kidney, and spleen) was 50% to 75% lower in non-binders than in binders. In contrast, [(11)C]-(R)-PK 11195 distinguished binders and non-binders in only heart and lung. For the in vitro assay, [(3)H]PBR28 had more than 10-fold lower affinity to TSPO in non-binders than in binders. The in vivo specific binding of [(11)C]-(R)-PK 11195 in monkey brain was approximately 80-fold lower than that reported for [(11)C]PBR28. CONCLUSIONS: Based on binding of [(3)H]PK 11195 to leukocyte membranes, both binders and non-binders express TSPO. Non-binding to PBR28 is caused by its low affinity for TSPO in non-binders. Non-binding may be differentially expressed in organs of the body. The relatively low in vivo specific binding of [(11)C]-(R)-PK 11195 may have obscured its detection of non-binding in peripheral organs.
Assuntos
Acetamidas/farmacocinética , Inflamação/diagnóstico por imagem , Inflamação/metabolismo , Isoquinolinas/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Piridinas/farmacocinética , Receptores de GABA/metabolismo , Adulto , Animais , Biomarcadores/metabolismo , Radioisótopos de Carbono/farmacocinética , Feminino , Haplorrinos , Humanos , Masculino , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Imagem Corporal Total/métodosRESUMO
[(11)C]N-desmethyl-Loperamide ([(11)C]dLop) is used in positron emission tomography (PET) to measure the in vivo activity of efflux transporters that block the passage of drugs across the blood-brain barrier. The three most prevalent ATP-binding cassette efflux transporters at the blood-brain barrier are P-glycoprotein (P-gp), multidrug resistance protein 1 (Mrp1), and breast cancer resistance protein (BCRP). We sought to measure the selectivity of dLop among these three transporters. The selectivity of dLop at low concentrations (< or =1 nM) was measured both as the accumulation of [(3)H]dLop in human cells that overexpress each transporter and as the uptake of [(11)C]dLop in brains of mice that lack genes encoding P-gp, Mrp1, or BCRP. The selectivity of dLop at high concentrations (> or =20 microM) was measured as the inhibition of uptake of a fluorescent substrate and the change in cytotoxicity of drugs effluxed at each transporter. Accumulation of [(3)H]dLop was lowest in cells overexpressing P-gp, and the uptake of [(11)C]dLop was highest in brains of mice lacking P-gp. At high concentrations, dLop selectively inhibited P-gp function and also decreased the resistance of only the P-gp-expressing cells to cytotoxic agents. dLop is selective for P-gp among these three transporters, but its activity is dependent on concentration. At low concentrations (< or =1 nM), dLop acts only as a substrate; at high concentrations (> or =20 microM), it acts as both a substrate and an inhibitor (i.e., a competitive substrate). Because low concentrations of radiotracer are used for PET imaging, [(11)C]dLop acts selectively and only as a substrate for P-gp.
Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico/fisiologia , Barreira Hematoencefálica/metabolismo , Glicoproteínas/metabolismo , Loperamida/análogos & derivados , Loperamida/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Animais , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacocinética , Encéfalo/metabolismo , Circulação Cerebrovascular , Humanos , Loperamida/química , Loperamida/farmacologia , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual/fisiologia , Células Tumorais CultivadasRESUMO
Metabotropic glutamate subtype-5 receptors (mGluR5) are implicated in several neuropsychiatric disorders. Positron emission tomography (PET) with a suitable radioligand may enable monitoring of regional brain mGluR5 density before and during treatments. We have developed a new radioligand, 3-fluoro-5-(2-(2-[(18)F](fluoromethyl)thiazol-4-yl)ethynyl)benzonitrile ([(18)F]SP203), for imaging brain mGluR5 in monkey and human. In monkey, radioactivity was observed in bone, showing release of [(18)F]-fluoride ion from [(18)F]SP203. This defluorination was not inhibited by disulfiram, a potent inhibitor of CYP2E1. PET confirmed bone uptake of radioactivity and therefore defluorination of [(18)F]SP203 in rats. To understand the biochemical basis for defluorination, we administered [(18)F]SP203 plus SP203 in rats for ex vivo analysis of metabolites. Radio-high-performance liquid chromatography detected [(18)F]fluoride ion as a major radiometabolite in both brain extract and urine. Incubation of [(18)F]SP203 with brain homogenate also generated this radiometabolite, whereas no metabolism was detected in whole blood in vitro. Liquid chromatography-mass spectrometry analysis of the brain extract detected m/z 548 and 404 ions, assignable to the [M + H](+) of S-glutathione (SP203Glu) and N-acetyl-S-l-cysteine (SP203Nac) conjugates of SP203, respectively. In urine, only the [M + H](+) of SP203Nac was detected. Mass spectrometry/mass spectrometry and multi-stage mass spectrometry analyses of each metabolite yielded product ions consistent with its proposed structure, including the former fluoromethyl group as the site of conjugation. Metabolite structures were confirmed by similar analyses of SP203Glu and SP203Nac, prepared by glutathione S-transferase reaction and chemical synthesis, respectively. Thus, glutathionylation at the 2-fluoromethyl group is responsible for the radiodefluorination of [(18)F]SP203 in rat. This study provides the first demonstration of glutathione-promoted radiodefluorination of a PET radioligand.
Assuntos
Química Encefálica , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Receptores de Glutamato Metabotrópico/análise , Animais , Cromatografia Líquida de Alta Pressão , Radioisótopos de Flúor/análise , Glutationa Transferase/metabolismo , Halogenação , Espectrometria de Massas , Nitrilas/análise , Compostos Radiofarmacêuticos/análise , Ratos , Receptor de Glutamato Metabotrópico 5 , Tiazóis/análise , Urina/químicaRESUMO
Purpose: Tumor vessels influence the growth and response of tumors to therapy. Imaging vascular changes in vivo using dynamic contrast-enhanced MRI (DCE-MRI) has shown potential to guide clinical decision making for treatment. However, quantitative MR imaging biomarkers of vascular function have not been widely adopted, partly because their relationship to structural changes in vessels remains unclear. We aimed to elucidate the relationships between vessel function and morphology in vivo Experimental Design: Untreated preclinical tumors with different levels of vascularization were imaged sequentially using DCE-MRI and CT. Relationships between functional parameters from MR (iAUC, K trans, and BATfrac) and structural parameters from CT (vessel volume, radius, and tortuosity) were assessed using linear models. Tumors treated with anti-VEGFR2 antibody were then imaged to determine whether antiangiogenic therapy altered these relationships. Finally, functional-structural relationships were measured in 10 patients with liver metastases from colorectal cancer.Results: Functional parameters iAUC and K trans primarily reflected vessel volume in untreated preclinical tumors. The relationships varied spatially and with tumor vascularity, and were altered by antiangiogenic treatment. In human liver metastases, all three structural parameters were linearly correlated with iAUC and K trans For iAUC, structural parameters also modified each other's effect.Conclusions: Our findings suggest that MR imaging biomarkers of vascular function are linked to structural changes in tumor vessels and that antiangiogenic therapy can affect this link. Our work also demonstrates the feasibility of three-dimensional functional-structural validation of MR biomarkers in vivo to improve their biological interpretation and clinical utility. Clin Cancer Res; 24(19); 4694-704. ©2018 AACR.
Assuntos
Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neovascularização Patológica/diagnóstico por imagem , Idoso , Inibidores da Angiogênese/administração & dosagem , Animais , Anticorpos Anti-Idiotípicos/administração & dosagem , Anticorpos Anti-Idiotípicos/imunologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Meios de Contraste/administração & dosagem , Meios de Contraste/química , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Masculino , Camundongos , Pessoa de Meia-Idade , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/imunologiaRESUMO
Adenosine A(2A) receptors are preferentially expressed in rat striatum, where they are concentrated in dendritic spines of striatopallidal medium spiny neurons and exist in a heteromeric complex with D(2) dopamine (DA) receptors. Behavioral and biochemical studies indicate an antagonistic relationship between A(2A) and D(2) receptors. Previous studies have demonstrated that food-restricted (FR) rats display behavioral and striatal cellular hypersensitivity to D(1) and D(2) DA receptor stimulation. These alterations may underlie adaptive, as well as maladaptive, behaviors characteristic of the FR rat. The present study examined whether FR rats are hypersensitive to the A(2A) receptor agonist, CGS-21680. In Experiment 1, spontaneous horizontal motor activity did not differ between FR and ad libitum fed (AL) rats, while vertical activity was greater in the former. Intracerebroventricular (i.c.v.) administration of CGS-21680 (0.25 and 1.0 nmol) decreased both types of motor activity in FR rats, and returned vertical activity levels to those observed in AL rats. In Experiment 2, FR rats given access to a running wheel for a brief period outside of the home cage rapidly acquired wheel running while AL rats did not. Pretreatment with CGS-21680 (1.0 nmol) blocked the acquisition of wheel running. When administered to FR subjects that had previously acquired wheel running, CGS-21680 suppressed the behavior. In Experiment 3, CGS-21680 (1.0 nmol) activated both ERK 1/2 and CREB in caudate-putamen with no difference between feeding groups. However, in nucleus accumbens (NAc), CGS-21680 failed to activate ERK 1/2 and selectively activated CREB in FR rats. These results indicate that FR subjects are hypersensitive to several effects of an adenosine A(2A) agonist, and suggest the involvement of an upregulated A(2A) receptor-linked signaling pathway in NAc. Medications targeting the A(2A) receptor may have utility in the treatment of maladaptive behaviors associated with FR, including substance abuse and compulsive exercise.
Assuntos
Adenosina/análogos & derivados , Anti-Hipertensivos/farmacologia , Proteína de Ligação a CREB/metabolismo , Privação de Alimentos , Núcleo Accumbens/efeitos dos fármacos , Fenetilaminas/farmacologia , Corrida , Adenosina/farmacologia , Análise de Variância , Animais , Comportamento Animal , Relação Dose-Resposta a Droga , Injeções Intraventriculares/métodos , Masculino , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-DawleyRESUMO
Changes in P-glycoprotein and ABCG2 densities may play a role in amyloid-beta accumulation in Alzheimer's disease. However, previous studies report conflicting results from different brain regions, without correcting for changes in vessel density. We developed an automated method to measure transporter density exclusively within the vascular space, thereby correcting for vessel density. We then examined variability in transporter density across brain regions, matter, and disease using two cohorts of post-mortem brains from Alzheimer's disease patients and age-matched controls. Changes in transporter density were also investigated in capillaries near plaques and on the mRNA level. P-glycoprotein density varied with brain region and matter, whereas ABCG2 density varied with brain matter. In temporal cortex, P-glycoprotein density was 53% lower in Alzheimer's disease samples than in controls, and was reduced by 35% in capillaries near plaque deposits within Alzheimer's disease samples. ABCG2 density was unaffected in Alzheimer's disease. No differences were detected at the transcript level. Our study indicates that region-specific changes in transporter densities can occur globally and locally near amyloid-beta deposits in Alzheimer's disease, providing an explanation for conflicting results in the literature. When differences in region and matter are accounted for, changes in density can be reproducibly measured using our automated method.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Capilares/metabolismo , Interpretação de Imagem Assistida por Computador/métodos , Proteínas de Neoplasias/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Capilares/diagnóstico por imagem , Capilares/patologia , Estudos de Casos e Controles , Imunofluorescência , Substância Cinzenta/irrigação sanguínea , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Humanos , Microscopia de Fluorescência , Substância Branca/irrigação sanguínea , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Substância Branca/patologiaRESUMO
The oxygen status of a tumor has significant clinical implications for treatment prognosis, with well-oxygenated subvolumes responding markedly better to radiotherapy than poorly supplied regions. Oxygen is essential for tumor growth, yet estimation of local oxygen distribution can be difficult to ascertain in situ, due to chaotic patterns of vasculature. It is possible to avoid this confounding influence by using avascular tumor models, such as tumor spheroids, a much better approximation of realistic tumor dynamics than monolayers, where oxygen supply can be described by diffusion alone. Similar to in situ tumours, spheroids exhibit an approximately sigmoidal growth curve, often approximated and fitted by logistic and Gompertzian sigmoid functions. These describe the basic rate of growth well, but do not offer an explicitly mechanistic explanation. This work examines the oxygen dynamics of spheroids and demonstrates that this growth can be derived mechanistically with cellular doubling time and oxygen consumption rate (OCR) being key parameters. The model is fitted to growth curves for a range of cell lines and derived values of OCR are validated using clinical measurement. Finally, we illustrate how changes in OCR due to gemcitabine treatment can be directly inferred using this model.
Assuntos
Desoxicitidina/análogos & derivados , Modelos Teóricos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Consumo de Oxigênio/efeitos dos fármacos , Oxigênio/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/farmacologia , Humanos , Células Tumorais Cultivadas , GencitabinaRESUMO
Regions of tissue which are well oxygenated respond better to radiotherapy than hypoxic regions by up to a factor of three. If these volumes could be accurately estimated, then it might be possible to selectively boost dose to radio-resistant regions, a concept known as dose-painting. While imaging modalities such as 18F-fluoromisonidazole positron emission tomography (PET) allow identification of hypoxic regions, they are intrinsically limited by the physics of such systems to the millimetre domain, whereas tumour oxygenation is known to vary over a micrometre scale. Mathematical modelling of microscopic tumour oxygen distribution therefore has the potential to complement and enhance macroscopic information derived from PET. In this work, we develop a general method of estimating oxygen distribution in three dimensions from a source vessel map. The method is applied analytically to line sources and quasi-linear idealized line source maps, and also applied to full three-dimensional vessel distributions through a kernel method and compared with oxygen distribution in tumour sections. The model outlined is flexible and stable, and can readily be applied to estimating likely microscopic oxygen distribution from any source geometry. We also investigate the problem of reconstructing three-dimensional oxygen maps from histological and confocal two-dimensional sections, concluding that two-dimensional histological sections are generally inadequate representations of the three-dimensional oxygen distribution.