Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(23): 9741-9747, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36458929

RESUMO

We report on magneto-optical studies of the quasi-two-dimensional van der Waals antiferromagnet FePS3. Our measurements reveal an excitation that closely resembles the antiferromagnetic resonance mode typical of easy-axis antiferromagnets; nevertheless, it displays an unusual, four-times larger Zeeman splitting in an applied magnetic field. We identify this excitation with an |Sz| = 4 multipolar magnon─a single-ion 4-magnon bound state─that corresponds to a full reversal of a single magnetic moment of the Fe2+ ion. We argue that condensation of multipolar magnons in large-spin materials with a strong magnetic anisotropy can produce new exotic states.

2.
Nano Lett ; 21(6): 2519-2525, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33683895

RESUMO

We investigate the origin of emission lines apparent in the low-temperature photoluminescence spectra of n-doped WS2 monolayer embedded in hexagonal BN layers using external magnetic fields and first-principles calculations. Apart from the neutral A exciton line, all observed emission lines are related to the negatively charged excitons. Consequently, we identify emissions due to both the bright (singlet and triplet) and dark (spin- and momentum-forbidden) negative trions as well as the phonon replicas of the latter optically inactive complexes. The semidark trions and negative biexcitons are distinguished. On the basis of their experimentally extracted and theoretically calculated g-factors, we identify three distinct families of emissions due to exciton complexes in WS2: bright, intravalley, and intervalley dark. The g-factors of the spin-split subbands in both the conduction and valence bands are also determined.

3.
Phys Chem Chem Phys ; 22(34): 19155-19161, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32812577

RESUMO

The spectral signatures associated with different negatively charged exciton complexes (trions) in a WS2 monolayer encapsulated in hBN are analyzed from low temperature and polarization resolved reflectance contrast (RC) and photoluminescence (PL) experiments, with an applied magnetic field. Based on results obtained from the RC experiment, we show that the valley Zeeman effect affects the optical response of both the singlet and the triplet trion species through the evolution of their energy and of their relative intensity, when applying an external magnetic field. Our analysis allows us to estimate a free electron concentration of ∼1.3 × 1011 cm-2. The observed evolutions based on PL experiments on the same sample are different and can hardly be understood within the same simple frame, highlighting the complexity of relaxation processes involved in the PL response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA