Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nano Lett ; 20(1): 284-291, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31794217

RESUMO

One-dimensional defects in two-dimensional (2D) materials can be particularly damaging because they directly impede the transport of charge, spin, or heat and can introduce a metallic character into otherwise semiconducting systems. Current characterization techniques suffer from low throughput and a destructive nature or limitations in their unambiguous sensitivity at the nanoscale. Here we demonstrate that dark-field second harmonic generation (SHG) microscopy can rapidly, efficiently, and nondestructively probe grain boundaries and edges in monolayer dichalcogenides (i.e., MoSe2, MoS2, and WS2). Dark-field SHG efficiently separates the spatial components of the emitted light and exploits interference effects from crystal domains of different orientations to localize grain boundaries and edges as very bright 1D patterns through a Cerenkov-type SHG emission. The frequency dependence of this emission in MoSe2 monolayers is explained in terms of plasmon-enhanced SHG related to the defect's metallic character. This new technique for nanometer-scale imaging of the grain structure, domain orientation and localized 1D plasmons in 2D different semiconductors, thus enables more rapid progress toward both applications and fundamental materials discoveries.

2.
Nano Lett ; 15(7): 4599-604, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26029960

RESUMO

Designing "ideal electrodes" that simultaneously guarantee low mechanical damping and electrical loss as well as high electromechanical coupling in ultralow-volume piezoelectric nanomechanical structures can be considered to be a key challenge in the NEMS field. We show that mechanically transferred graphene, floating at van der Waals proximity, closely mimics "ideal electrodes" for ultrahigh frequency (0.2 GHz < f0 < 2.6 GHz) piezoelectric nanoelectromechanical resonators with negligible mechanical mass and interfacial strain and perfect radio frequency electric field confinement. These unique attributes enable graphene-electrode-based piezoelectric nanoelectromechanical resonators to operate at their theoretically "unloaded" frequency-limits with significantly improved electromechanical performance compared to metal-electrode counterparts, despite their reduced volumes. This represents a spectacular trend inversion in the scaling of piezoelectric electromechanical resonators, opening up new possibilities for the implementation of nanoelectromechanical systems with unprecedented performance.

3.
Small ; 11(5): 597-603, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25236988

RESUMO

Freestanding graphene membranes are unique materials. The combination of atomically thin dimensions, remarkable mechanical robustness, and chemical stability make porous and non-porous graphene membranes attractive for water purification and various sensing applications. Nanopores in graphene and other 2D materials have been identified as promising devices for next-generation DNA sequencing based on readout of either transverse DNA base-gated current or through-pore ion current. While several ground breaking studies of graphene-based nanopores for DNA analysis have been reported, all methods to date require a physical transfer of the graphene from its source of production onto an aperture support. The transfer process is slow and often leads to tears in the graphene that render many devices useless for nanopore measurements. In this work, we report a novel scalable approach for site-directed fabrication of pinhole-free graphene nanomembranes. Our approach yields high quality few-layer graphene nanomembranes produced in less than a day using a few steps that do not involve transfer. We highlight the functionality of these graphene devices by measuring DNA translocation through electron-beam fabricated nanopores in such membranes.


Assuntos
Grafite/química , Grafite/síntese química , Membranas Artificiais , Nanopartículas/química , Nanotecnologia/métodos , DNA/química , Condutividade Elétrica , Íons , Nanoporos
4.
Nano Lett ; 13(3): 909-16, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23350824

RESUMO

We present the photodetection properties of graphene/Si heterojunctions both in the photocurrent and photovoltage modes. Monolayer graphene/Si junctions were found to be excellent weak-signal detectors with photovoltage responsivity exceeding 10(7) V/W and with noise-equivalent-power reaching ∼1 pW/Hz(1/2), potentially capable of distinguishing materials with transmittance, T = 0.9995 in a 0.5 s integration time. In the photocurrent mode, the response was found to remain linear over at least six decades of incident power (P), with tunable responsivity up to 435 mA/W (corresponding to incident photon conversion efficiency (IPCE) > 65%) obtained by layer thickening and doping. With millisecond-scale responses and ON/OFF ratios exceeding 10(4), these photodiodes are highly suitable for tunable and scalable broadband (400 < λ < 900 nm) photodetectors, photometers, and millisecond-response switching, spectroscopic and imaging devices, and further, and are architecturally compatible with on-chip low-power optoelectronics.

5.
Nano Lett ; 13(8): 3476-81, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23859076

RESUMO

We report on the low-temperature electrical transport properties of large area boron and nitrogen codoped graphene layers (BNC). The temperature dependence of resistivity (5 K < T < 400 K) of BNC layers show semiconducting nature and display a band gap which increases with B and N content, in sharp contrast to large area graphene layers, which shows metallic behavior. Our investigations show that the amount of B dominates the semiconducting nature of the BNC layers. This experimental observations agree with the density functional theory (DFT) calculations performed on BNC structures similar in composition to the experimentally measured samples. In addition, the temperature dependence of the electrical conductivity of these samples displays two regimes: at higher temperatures, the doped samples display an Arrhenius-like temperature dependence thus indicating a well-defined band gap. At the lowest temperatures, the temperature dependence of the conductivity deviates from activated behavior and displays a conduction mechanism consistent with Mott's two-dimensional (2D) variable range hopping (2D-VRH). The ability to tune the electronic properties of thin layers of BNC by simply varying the concentration of B and N will provide a tremendous boost for obtaining materials with tunable electronic properties relevant to applications in solid state electronics.

6.
Adv Mater ; 36(11): e2303098, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38195961

RESUMO

The Materials Genome Initiative (MGI) has streamlined the materials discovery effort by leveraging generic traits of materials, with focus largely on perfect solids. Defects such as impurities and perturbations, however, drive many attractive functional properties of materials. The rich tapestry of charge, spin, and bonding states hosted by defects are not accessible to elements and perfect crystals, and defects can thus be viewed as another class of "elements" that lie beyond the periodic table. Accordingly, a Defect Genome Initiative (DGI) to accelerate functional defect discovery for energy, quantum information, and other applications is proposed. First, major advances made under the MGI are highlighted, followed by a delineation of pathways for accelerating the discovery and design of functional defects under the DGI. Near-term goals for the DGI are suggested. The construction of open defect platforms and design of data-driven functional defects, along with approaches for fabrication and characterization of defects, are discussed. The associated challenges and opportunities are considered and recent advances towards controlled introduction of functional defects at the atomic scale are reviewed. It is hoped this perspective will spur a community-wide interest in undertaking a DGI effort in recognition of the importance of defects in enabling unique functionalities in materials.


Assuntos
Genômica , Fenótipo
7.
Adv Mater ; 35(27): e2109892, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35195312

RESUMO

The quantum age is just around the corner. As quantum systems become more stable, robust, and mainstream, tackling the challenge of high-throughput manufacturing will require further developments in materials synthesis, characterization, assembly, and diagnostics. As the building blocks of future technologies scale down to atomic and molecular scales, a paradigm shift in manufacturing will begin to take shape. Inspired by a quantum manufacturing world that elevates the Materials Genome Initiative to the next level, a "human-in-the-loop" framework for high-throughput manufacturing, which addresses key opportunities and challenges to be overcome, is outlined.

8.
ACS Nano ; 17(11): 9694-9747, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37219929

RESUMO

Two-dimensional (2D) material research is rapidly evolving to broaden the spectrum of emergent 2D systems. Here, we review recent advances in the theory, synthesis, characterization, device, and quantum physics of 2D materials and their heterostructures. First, we shed insight into modeling of defects and intercalants, focusing on their formation pathways and strategic functionalities. We also review machine learning for synthesis and sensing applications of 2D materials. In addition, we highlight important development in the synthesis, processing, and characterization of various 2D materials (e.g., MXnenes, magnetic compounds, epitaxial layers, low-symmetry crystals, etc.) and discuss oxidation and strain gradient engineering in 2D materials. Next, we discuss the optical and phonon properties of 2D materials controlled by material inhomogeneity and give examples of multidimensional imaging and biosensing equipped with machine learning analysis based on 2D platforms. We then provide updates on mix-dimensional heterostructures using 2D building blocks for next-generation logic/memory devices and the quantum anomalous Hall devices of high-quality magnetic topological insulators, followed by advances in small twist-angle homojunctions and their exciting quantum transport. Finally, we provide the perspectives and future work on several topics mentioned in this review.

9.
Materials (Basel) ; 15(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36363015

RESUMO

The effect of localized plasmon on the photoemission and absorption in hybrid molybdenum disulfide-Gallium nitride (MoS2-GaN) heterostructure has been studied. Localized plasmon induced by platinum nanoparticles was resonantly coupled to the bandedge states of GaN to enhance the UV emission from the hybrid semiconductor system. The presence of the platinum nanoparticles also increases the effective absorption and the transient gain of the excitonic absorption in MoS2. Localized plasmons were also resonantly coupled to the defect states of GaN and the exciton states using gold nanoparticles. The transfer of hot carriers from Au plasmons to the conduction band of MoS2 and the trapping of excited carriers in MoS2 within GaN defects results in transient plasmon-induced transparency at ~1.28 ps. Selective optical excitation of the specific resonances in the presence of the localized plasmons can be used to tune the absorption or emission properties of this layered 2D-3D semiconductor material system.

10.
Nano Lett ; 10(11): 4295-301, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20557029

RESUMO

We present a scalable and facile technique for noncovalent functionalization of graphene with 1-pyrenecarboxylic acid that exfoliates single-, few-, and multilayered graphene flakes into stable aqueous dispersions. The exfoliation mechanism is established using stringent control experiments and detailed characterization steps. Using the exfoliated graphene, we demonstrate highly sensitive and selective conductometric sensors (whose resistance rapidly changes >10,000% in saturated ethanol vapor), and ultracapacitors with extremely high specific capacitance (∼ 120 F/g), power density (∼ 105 kW/kg), and energy density (∼ 9.2 Wh/kg).


Assuntos
Coloides/química , Cristalização/métodos , Grafite/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Água/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Tamanho da Partícula , Propriedades de Superfície
11.
ACS Appl Bio Mater ; 4(5): 4071-4078, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35006823

RESUMO

Electrically bridging severed nerves in vivo has transformative healthcare implications, but current materials are inadequate. Carbon nanotubes (CNTs) are promising, with low impedance, high charge injection capacity, high flexibility, are chemically inert, and can electrically couple to neurons. Ultralong CNTs are unexplored for neural applications. Using only ultralong CNTs in saline, without neuroregeneration or rehabilitation, we partially restored neural activity across a severed mouse spinal cord, recovering 23.8% of the intact amplitude, while preserving signal shape. Neural signals are preferentially facilitated over artifact signals by a factor of ×5.2, suggesting ultralong CNTs are a promising material for neural-scaffolding and neural-electronics applications.


Assuntos
Materiais Biocompatíveis/química , Nanotubos de Carbono/química , Neurônios/metabolismo , Medula Espinal/metabolismo , Animais , Teste de Materiais , Camundongos , Tamanho da Partícula
12.
ACS Nano ; 15(1): 625-636, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33405898

RESUMO

Bottom-up assembly of two-dimensional (2D) materials into macroscale morphologies with emergent properties requires control of the material surroundings, so that energetically favorable conditions direct the assembly process. MXenes, a class of recently developed 2D materials, have found new applications in areas such as electrochemical energy storage, nanoscale electronics, sensors, and biosensors. In this paper, we present a lateral self-assembly method for wafer-scale deposition of a mosaic-type 2D MXene flake monolayer that spontaneously orders at the interface between two immiscible solvents. ReaxFF molecular dynamics simulations elucidate the interactions of a MXene flake with the solvents and its stability at the liquid/liquid interface, the prerequisite for MXene flakes self-assembly at the interface. Moreover, facile transfer of this monolayer onto a flat substrate (Si, glass) results in high-coverage monolayer films with uniform thickness and homogeneous optical properties. Multiscale characterization of the resulting films reveals the mosaic structure and sheds light on the electronic properties of the films, which exhibit good electrical conductivity over cm-scale areas.

13.
Nanoscale ; 11(34): 15929-15938, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31414108

RESUMO

When 2D materials are vertically stacked, new physics emerges from interlayer orbital interactions and charge transfer modulated by the additional periodicity of interlayer atomic registry (moiré superlattice). Surprisingly, relatively little is known regarding the real-space distribution of the transferred charges within this framework. Here we provide the first experimental indications of a real-space, non-atomic lattice formed by interlayer coupling induced charge redistribution in vertically stacked Bi2Se3/transition metal dichalcogenide (TMD) 2D heterostructures. Robust enough to scatter 200 keV electron beams, this non-atomic lattice generates selected area diffraction patterns that correspond excellently with simulated patterns from moiré superlattices of the parent crystals suggesting their location at sites of high interlayer atomic registry. Density functional theory (DFT) predicts concentrated charge pools reside in the interlayer region, located at sites of high nearest-neighbor atomic registry, suggesting the non-atomic lattices are standalone, reside in the interlayer region, and are purely electronic.

14.
ACS Appl Mater Interfaces ; 11(17): 15913-15921, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964277

RESUMO

Two-dimensional (2D) heterostructures are more than a sum of the parent 2D materials, but are also a product of the interlayer coupling, which can induce new properties. In this paper, we present a method to tune the interlayer coupling in Bi2Se3/MoS2 2D heterostructures by regulating the oxygen presence in the atmosphere, while applying laser or thermal energy. Our data suggest that the interlayer coupling is tuned through the diffusive intercalation and deintercalation of oxygen molecules. When one layer of Bi2Se3 is grown on monolayer MoS2, an influential interlayer coupling is formed, which quenches the signature photoluminescence (PL) peaks. However, thermally treating in the presence of oxygen disrupts the interlayer coupling, facilitating the emergence of the MoS2 PL peak. Our density functional theory calculations predict that intercalated oxygen increases the interlayer separation ∼17%, disrupting the interlayer coupling and inducing the layers to behave more electronically independent. The interlayer coupling can then be restored by thermally treating in N2 or Ar, where the peaks will requench. Hence, this is an interesting oxygen-induced switching between "non-radiative" and "radiative" exciton recombination. This switching can also be accomplished locally, controllably, and reversibly using a low-power focused laser, while changing the environment from pure N2 to air. This allows for the interlayer coupling to be precisely manipulated with submicron spatial resolution, facilitating site-programmable 2D light-emitting pixels whose emission intensity could be precisely varied by a factor exceeding 200×. Our results show that these atomically thin 2D heterostructures may be excellent candidates for oxygen sensing.

15.
Adv Mater ; 35(27): e2204928, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37408494
16.
ACS Nano ; 12(1): 740-750, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29281260

RESUMO

We report a detailed investigation on Raman spectroscopy in vapor-phase chalcogenization grown, high-quality single-crystal atomically thin molybdenum diselenide samples. Measurements were performed in samples with four different incident laser excitation energies ranging from 1.95 eV ⩽ Eex ⩽ 2.71 eV, revealing rich spectral information in samples ranging from N = 1-4 layers and a thick, bulk sample. In addition to previously observed (and identified) peaks, we specifically investigate the origin of a peak near ω ≈ 250 cm-1. Our density functional theory and Bethe-Salpeter calculations suggest that this peak arises from a double-resonant Raman process involving the ZA acoustic phonon perpendicular to the layer. This mode appears prominently in freshly prepared samples and disappears in aged samples, thereby offering a method for ascertaining the high optoelectronic quality of freshly prepared 2D-MoSe2 crystals. We further present an in-depth investigation of the energy-dependent variation of the position of this and other peaks and provide evidence of C-exciton-phonon coupling in monolayer MoSe2. Finally, we show how the signature peak positions and intensities vary as a function of layer thickness in these samples.

17.
Sci Adv ; 3(7): e1601741, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28740860

RESUMO

Vertical stacking is widely viewed as a promising approach for designing advanced functionalities using two-dimensional (2D) materials. Combining crystallographically commensurate materials in these 2D stacks has been shown to result in rich new electronic structure, magnetotransport, and optical properties. In this context, vertical stacks of crystallographically incommensurate 2D materials with well-defined crystallographic order are a counterintuitive concept and, hence, fundamentally intriguing. We show that crystallographically dissimilar and incommensurate atomically thin MoS2 and Bi2Se3 layers can form rotationally aligned stacks with long-range crystallographic order. Our first-principles theoretical modeling predicts heterocrystal electronic band structures, which are quite distinct from those of the parent crystals, characterized with an indirect bandgap. Experiments reveal striking optical changes when Bi2Se3 is stacked layer by layer on monolayer MoS2, including 100% photoluminescence (PL) suppression, tunable transmittance edge (1.1→0.75 eV), suppressed Raman, and wide-band evolution of spectral transmittance. Disrupting the interface using a focused laser results in a marked the reversal of PL, Raman, and transmittance, demonstrating for the first time that in situ manipulation of interfaces can enable "reconfigurable" 2D materials. We demonstrate submicrometer resolution, "laser-drawing" and "bit-writing," and novel laser-induced broadband light emission in these heterocrystal sheets.

18.
Adv Mater ; 29(23)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28393408

RESUMO

Designing ultrasensitive detectors often requires complex architectures, high-voltage operations, and sophisticated low-noise measurements. In this work, it is shown that simple low-bias two-terminal DC-conductance values of graphene and single-walled carbon nanotubes are extremely sensitive to ionized gas molecules. Incident ions form an electrode-free, dielectric- or electrolyte-free, bias-free vapor-phase top-gate that can efficiently modulate carrier densities up to ≈0.6 × 1013 cm-2 . Surprisingly, the resulting current changes are several orders of magnitude larger than that expected from conventional electrostatic gating, suggesting the possible role of a current-gain inducing mechanism similar to those seen in photodetectors. These miniature detectors demonstrate charge-current amplification factor values exceeding 108 A C-1 in vacuum with undiminished responses in open air, and clearly distinguish between positive and negative ions sources. At extremely low rates of ion incidence, detector currents show stepwise changes with time, and calculations suggest that these stepwise changes can result from arrival of individual ions. These sensitive ion detectors are used to demonstrate a proof-of-concept low-cost, amplifier-free, light-emitting-diode-based low-power ion-indicator.

19.
ACS Nano ; 11(4): 4365-4372, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28391679

RESUMO

Mapping biocurrents at both microsecond and single-cell resolution requires the combination of optical imaging with innovative electrophysiological sensing techniques. Here, we present transparent electrophysiology electrodes and interconnects made of gold (Au) nanomesh on flexible substrates to achieve such measurements. Compared to previously demonstrated indium tin oxide (ITO) and graphene electrodes, the ones from Au nanomesh possess superior properties including low electrical impedance, high transparency, good cell viability, and superb flexibility. Specifically, we demonstrated a 15 nm thick Au nanomesh electrode with 8.14 Ω·cm2 normalized impedance, >65% average transmittance over a 300-1100 nm window, and stability up to 300 bending cycles. Systematic sheet resistance measurements, electrochemical impedance studies, optical characterization, mechanical bending tests, and cell studies highlight the capabilities of the Au nanomesh as a transparent electrophysiology electrode and interconnect material. Together, these results demonstrate applicability of using nanomesh under biological conditions and broad applications in biology and medicine.

20.
Microsyst Nanoeng ; 2: 16026, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-31057826

RESUMO

The use of micro-/nanoelectromechanical resonators for the room temperature detection of electromagnetic radiation at infrared frequencies has recently been investigated, showing thermal detection capabilities that could potentially outperform conventional microbolometers. The scaling of the device thickness in the nanometer range and the achievement of high infrared absorption in such a subwavelength thickness, without sacrificing the electromechanical performance, are the two key challenges for the implementation of fast, high-resolution micro-/nanoelectromechanical resonant infrared detectors. In this paper, we show that by using a virtually massless, high-electrical-conductivity, and transparent graphene electrode, floating at the van der Waals separation of a few angstroms from a piezoelectric aluminum nitride nanoplate, it is possible to implement ultrathin (460 nm) piezoelectric nanomechanical resonant structures with improved electromechanical performance (>50% improved frequency×quality factor) and infrared detection capabilities (>100× improved infrared absorptance) compared with metal-electrode counterparts, despite their reduced volumes. The intrinsic infrared absorption capabilities of a submicron thin graphene-aluminum nitride plate backed with a metal electrode are investigated for the first time and exploited for the first experimental demonstration of a piezoelectric nanoelectromechanical resonant thermal detector with enhanced infrared absorptance in a reduced volume. Moreover, the combination of electromagnetic and piezoelectric resonances provided by the same graphene-aluminum nitride-metal stack allows the proposed device to selectively detect short-wavelength infrared radiation (by tailoring the thickness of aluminum nitride) with unprecedented electromechanical performance and thermal capabilities. These attributes potentially lead to the development of uncooled infrared detectors suitable for the implementation of high performance, miniaturized and power-efficient multispectral infrared imaging systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA