Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Chem Biodivers ; 20(11): e202301184, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37850550

RESUMO

In this study, anti-melanogenic, anti-inflammatory and anti-coagulant potentials of eighteen selected constituents of Ammi visnaga L. were investigated by Induced Fit Docking (IFD) and molecular dynamic simulation with Schrödinger software. The binding free energies of the selected natural compounds were computed by means of ΔG MM-GBSA studies. Anti-melanogetic activity of the constituent against agaricus bisporus tyrosinase, Priestia megaterium tyrosinase and Homo sapiens tyrosinase were evaluated. The result showed that apiumetin had more negative binding free energy against three tyrosinase enzymes than cognate ligands, tropolone and kojic acid. Docking analysis was also performed to predict the constituents with anti-inflammatory activity against human Tumor necrosis factor, Cyclooxygenase-2, Prostaglandin D2 11-ketoreductase AKR1C3 and Prostaglandin reductase PTGR2. The results showed that pyranocoumarins (visnadin, dihydrosamidin, samidin) have more negative binding free energy against Cyclooxygenase-2 and Prostaglandin D2 11-ketoreductase receptors than cognate drugs, rofecoxib and indomethacin. In addition, docking analysis shows that pyranocoumarins, apiumetin and cimifugin have more negative binding free energy against Vitamin K epoxide reductase than S-warfarin drug, predicting that they have anticoagulant activity. Furthermore, the constituents and their cognate drugs were subjected to 100 ns MD Simulation to predict their stability at the active sites of the enzymes.


Assuntos
Ammi , Piranocumarinas , Humanos , Simulação de Acoplamento Molecular , Ammi/química , Ammi/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Anticoagulantes/farmacologia , Ciclo-Oxigenase 2/metabolismo , Simulação de Dinâmica Molecular , Anti-Inflamatórios/farmacologia , Prostaglandinas
2.
Biochim Biophys Acta Bioenerg ; 1859(4): 292-299, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29410217

RESUMO

It is known, that the multi-subunit complex of photosystem II (PSII) and some of its single proteins exhibit carbonic anhydrase activity. Previously, we have shown that PSII depletion of HCO3-/CO2 as well as the suppression of carbonic anhydrase activity of PSII by a known inhibitor of α­carbonic anhydrases, acetazolamide (AZM), was accompanied by a decrease of electron transport rate on the PSII donor side. It was concluded that carbonic anhydrase activity was required for maximum photosynthetic activity of PSII but it was not excluded that AZM may have two independent mechanisms of action on PSII: specific and nonspecific. To investigate directly the specific influence of carbonic anhydrase inhibition on the photosynthetic activity in PSII we used another known inhibitor of α­carbonic anhydrase, trifluoromethanesulfonamide (TFMSA), which molecular structure and physicochemical properties are quite different from those of AZM. In this work, we show for the first time that TFMSA inhibits PSII carbonic anhydrase activity and decreases rates of both the photo-induced changes of chlorophyll fluorescence yield and the photosynthetic oxygen evolution. The inhibitory effect of TFMSA on PSII photosynthetic activity was revealed only in the medium depleted of HCO3-/CO2. Addition of exogenous HCO3- or PSII electron donors led to disappearance of the TFMSA inhibitory effect on the electron transport in PSII, indicating that TFMSA inhibition site was located on the PSII donor side. These results show the specificity of TFMSA action on carbonic anhydrase and photosynthetic activities of PSII. In this work, we discuss the necessity of carbonic anhydrase activity for the maximum effectiveness of electron transport on the donor side of PSII.


Assuntos
Anidrases Carbônicas/metabolismo , Elétrons , Mesilatos/farmacologia , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Pisum sativum/enzimologia , Acetazolamida/farmacologia , Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Clorofila/metabolismo , Clorofila A , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/efeitos da radiação , Concentração de Íons de Hidrogênio , Cinética , Luz , Oxigênio/metabolismo , Pisum sativum/efeitos dos fármacos , Pisum sativum/efeitos da radiação , Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Tilacoides/efeitos dos fármacos , Tilacoides/enzimologia , Tilacoides/efeitos da radiação
3.
Photosynth Res ; 133(1-3): 139-153, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28497193

RESUMO

Increasing inefficiency of production of important agricultural plants raises one of the biggest problems in the modern world. Herbicide application is still the best method of weed management. Traditional herbicides blocking only one of the plant metabolic pathways is ineffective due to the rapid growth of herbicide-resistant weeds. The synthesis of novel compounds effectively suppressing several metabolic processes, and therefore achieving the synergism effect would serve as the alternative approach to weed problem. For this reason, recently, we synthesized a series of nine novel Cu(II) complexes and four ligands, characterized them with different analyses techniques, and carried out their primary evaluation as inhibitors of photosynthetic electron transfer in spinach thylakoids (design, synthesis, and evaluation of a series of Cu(II) based metal-organic complexes as possible inhibitors of photosynthesis, J Photochem Photobiol B, submitted). Here, we evaluated in vitro inhibitory potency of these agents against: photochemistry and carbonic anhydrase activity of photosystem II (PSII); α-carbonic anhydrase from bovine erythrocytes; as well as glutathione reductase from chloroplast and baker's yeast. Our results show that all Cu(II) complexes excellently inhibit glutathione reductase and PSII carbonic anhydrase activity. Some of them also decently inhibit PSII photosynthetic activity.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Glutationa Redutase/antagonistas & inibidores , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Animais , Biocatálise/efeitos dos fármacos , Dióxido de Carbono/metabolismo , Bovinos , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Glutationa Redutase/metabolismo , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Cinética , Ligantes , Oxirredução , Relação Quantitativa Estrutura-Atividade , Saccharomyces cerevisiae/metabolismo , Spinacia oleracea/metabolismo , Fatores de Tempo
4.
Photosynth Res ; 130(1-3): 167-182, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26932934

RESUMO

Nineteen antimony(III) complexes were obtained and examined as possible herbicides. Six of these were synthesized for the first time, and their structures were identified using elemental analyses, 1H-NMR, 13C-NMR, FTIR, LCMS, magnetic susceptibility, and conductivity measurement techniques. For the nineteen examined antimony(III) complexes their most-stable forms were determined by DFT/B3LYP/LanL2DZ calculation method. These compounds were examined for effects on photosynthetic electron transfer and carbonic anhydrase activity of photosystem II, and glutathione reductase from chloroplast as well were investigated. Our results indicated that all antimony(III) complexes inhibited glutathione reductase activity of chloroplast. A number of these also exhibited good inhibitory efficiency of the photosynthetic and carbonic anhydrase activity of Photosystem II.


Assuntos
Antimônio/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Glutationa Redutase/antagonistas & inibidores , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Antimônio/química , Cloroplastos/efeitos dos fármacos , Herbicidas/farmacologia , Espectroscopia de Ressonância Magnética , Relação Estrutura-Atividade
5.
Biochim Biophys Acta ; 1817(8): 1229-36, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22306527

RESUMO

Quantitative structure-activity relationship (QSAR) analysis of the twenty-six perfluoroisopropyl-dinitrobenzene (PFIPDNB) derivatives was performed to explain their ability to suppress photochemical activity of the plants photosystem II using chloroplasts and subchloroplast thylakoid membranes enriched in photosystem II, called DT-20. Compounds were optimized by semi-empirical PM3 and DFT/B3LYP/6-31G methods. The Heuristic and the Best Multi-Linear Regression (BMLR) method in CODESSA were used to select the most appropriate molecular descriptors and to develop a linear QSAR model between experimental pI(50) values and the most significant set of the descriptors. The obtained models were validated by cross-validation (R(2)(cv)) and internal validation to confirm the stability and good predictive ability. The obtained eight models with five-parameter show that: (a) coefficient (R(2)) value of the chloroplast samples are slightly higher than that of the DT-20 samples both of Heuristic and BMLR models; (b) the coefficients of the BMLR models are slightly higher than that of Heuristic models both of chloroplasts and DT-20 samples; (c) The YZ shadow parameter and the indicator parameter, for presence of NO(2) substituent in the ring, are the most important descriptor at PM3-based and DFT-based QSAR models, respectively. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Assuntos
Dinitrobenzenos/farmacologia , Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Dinitrobenzenos/química , Transporte de Elétrons/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade
6.
Biomolecules ; 13(7)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37509094

RESUMO

Modern agricultural cultivation relies heavily on genetically modified plants that survive after exposure to herbicides that kill weeds. Despite this biotechnology, there is a growing need for new sustainable, environmentally friendly, and biodegradable herbicides. We developed a novel [CuL2]Br2 complex (L = bis{4H-1,3,5-triazino[2,1-b]benzothiazole-2-amine,4-(2-imidazole) that is active on PSII by inhibiting photosynthetic oxygen evolution on the micromolar level. [CuL2]Br2 reduces the FV of PSII fluorescence. Artificial electron donors do not rescind the effect of [CuL2]Br2. The inhibitory mechanism of [CuL2]Br2 remains unclear. To explore this mechanism, we investigated the effect of [CuL2]Br2 in the presence/absence of the well-studied inhibitor DCMU on PSII-containing membranes by OJIP Chl fluorescence transient measurements. [CuL2]Br2 has two effects on Chl fluorescence transients: (1) a substantial decrease of the Chl fluorescence intensity throughout the entire kinetics, and (2) an auxiliary "diuron-like" effect. The initial decrease dominates and is observed both with and without DCMU. In contrast, the "diuron-like" effect is small and is observed only without DCMU. We propose that [CuL2]Br2 has two binding sites for PSII with different affinities. At the high-affinity site, [CuL2]Br2 produces effects similar to PSII reaction center inhibition, while at the low-affinity site, [CuL2]Br2 produces effects identical to those of DCMU. These results are compared with other PSII-specific classes of herbicides.


Assuntos
Diurona , Herbicidas , Diurona/metabolismo , Diurona/farmacologia , Clorofila/metabolismo , Cobre/farmacologia , Spinacia oleracea , Complexo de Proteína do Fotossistema II/metabolismo , Fotoquímica , Fluorescência , Herbicidas/farmacologia
7.
Cells ; 11(17)2022 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-36078088

RESUMO

The effects of the novel [CuL2]Br2 complex (L = bis{4H-1,3,5-triazino [2,1-b]benzothiazole-2-amine,4-(2-imidazole)}copper(II) bromide complex) on the photosystem II (PSII) activity of PSII membranes isolated from spinach were studied. The absence of photosynthetic oxygen evolution by PSII membranes without artificial electron acceptors, but in the presence of [CuL2]Br2, has shown that it is not able to act as a PSII electron acceptor. In the presence of artificial electron acceptors, [CuL2]Br2 inhibits photosynthetic oxygen evolution. [CuL2]Br2 also suppresses the photoinduced changes of the PSII chlorophyll fluorescence yield (FV) related to the photoreduction of the primary quinone electron acceptor, QA. The inhibition of both characteristic PSII reactions depends on [CuL2]Br2 concentration. At all studied concentrations of [CuL2]Br2, the decrease in the FM level occurs exclusively due to a decrease in Fv. [CuL2]Br2 causes neither changes in the F0 level nor the retardation of the photoinduced rise in FM, which characterizes the efficiency of the electron supply from the donor-side components to QA through the PSII reaction center (RC). Artificial electron donors (sodium ascorbate, DPC, Mn2+) do not cancel the inhibitory effect of [CuL2]Br2. The dependences of the inhibitory efficiency of the studied reactions of PSII on [CuL2]Br2 complex concentration practically coincide. The inhibition constant Ki is about 16 µM, and logKi is 4.8. As [CuL2]Br2 does not change the aromatic amino acids' intrinsic fluorescence of the PSII protein components, it can be proposed that [CuL2]Br2 has no significant effect on the native state of PSII proteins. The results obtained in the present study are compared to the literature data concerning the inhibitory effects of PSII Cu(II) aqua ions and Cu(II)-organic complexes.


Assuntos
Complexo de Proteína do Fotossistema II , Spinacia oleracea , Clorofila/metabolismo , Transporte de Elétrons , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Spinacia oleracea/metabolismo
8.
J Enzyme Inhib Med Chem ; 24(4): 986-92, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19548771

RESUMO

A series of aromatic disulfonamide (1-8) derivatives and 4-methylbenzenesulfonyl hydrazide (9) were synthesized and characterized. All compounds were evaluated in vitro for their antimicrobial activity against Staphylococcus aureus ATCC 25953, Bacillus cereus ATCC 6633, Bacillus magaterium RSKK 5117, Escherichia coli ATCC 11230, Salmonella enterititis ATCC 13076 by microdilution and disc diffusion methods. Antimicrobial activity of the aromatic disulfonamides decreased as the length of the carbon chain increased. An analysis of the structure- activity relationship (SAR) along with computational studies showed that the most active compound (9) possessed low lipophilicity (AlogP=0.59) and high solubility (logS = -1.33).


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Animais , Antibacterianos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Espectroscopia de Ressonância Magnética , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/química
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 136 Pt C: 1418-27, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25459701

RESUMO

New antimony(III) complexes, [Sb(2-aminopyridine)2Cl3] (1a), [Sb(2-aminopyridine)2Br3] (1b), [Sb(5-methyl-2-aminopyridine)2Cl3] (2a), [Sb(5-methyl-2-aminopyridine)2Br3] (2b), [Sb(2-aminopyrimidine)2Cl3] (3a), [Sb(2-aminopyrimidine)2Br3] (3b), [Sb(4,6-dimethoxy-2-aminopyrimidine)2Cl3] (4a), [Sb(4,6-dimethoxy-2-aminopyrimidine)2Br3] (4b), [Sb(2-amino-1,3,5-triazine)2Cl3] (5a), [Sb(2-amino-1,3,5-triazine)2Br3] (5b), [Sb(2-guanidinobenzimidazole) Cl3] (6a), [Sb(2-guanidinobenzimidazole)Br3] (6b) [Sb(2- benzyl-2-thiopseudeourea)2Cl3] (7a) and [Sb(2- benzyl-2-thiopseudeourea)2Br3] (7b) were synthesized. Their structures were characterized by elemental analysis, molecular conductivity, FT-IR, (1)H NMR, LC-MS techniques. Glutathione reductase inhibitor activity, antimicrobial activity and DNA cleavage studies of the complexes were determined. The geometrical structures of the complexes were optimized by DFT/B3LYP method with LANL2DZ as basis set. Calculation results indicated that the equilibrium geometries of all complexes have square pyramidal shape. About 350 molecular descriptors (constitutional, topological, geometrical, electrostatic and quantum chemical parameters) of the complexes were calculated by DFT/B3LYP/LANL2DZ method with CODESSA software. Calculated molecular parameters were correlated to glutathione reductase inhibitory activity values (pIC50) of all complexes by Best Multi-Linear Regression (BMLR) method. Obtained two-parameter QSAR equation shows that increase in "maximum partial charge for a H atom" and decrease in HOMO-LUMO gap would be favorable for the glutathione reductase inhibitory activity.


Assuntos
Antibacterianos , Antimônio , Clivagem do DNA/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glutationa Redutase/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antimônio/química , Antimônio/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Inibidores Enzimáticos/síntese química , Testes de Sensibilidade Microbiana , Relação Quantitativa Estrutura-Atividade , Espectroscopia de Infravermelho com Transformada de Fourier
10.
J Photochem Photobiol B ; 153: 206-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26427018

RESUMO

Novel pyrimidine compound bearing disulfide bridge, 5,5'-disulfanediylbis(2-amino-4,6-dimetoxypyrimidine) (3) was synthesized by reduction of 2-amino-4,6-dimethoxy-5-thiocyanatopyrimidine for the first time, and its structure was confirmed by X-ray crystallographic analysis. Novel binuclear antimony(III) compound of (3), {Sb[5,5'-disulfanediylbis(2-amino-4,6-dimetoxypyrimidine)]Cl3}2 (4) and mononuclear antimony(III) compounds, SbL2Cl3, [L: 2-amino-5-thiol-4,6-dimethoxy pyrimidine (2) and 2-amino-5-(1H-tetrazol-5-ylthio)-4,6-dimethoxypyrimidine (6)] were synthesized and characterized with the help of elemental analysis, molecular conductivity, FT-IR, (1)H-NMR and LC-MS techniques. The geometrical structures optimized by a DFT/B3LYP/LANL2DZ method of the compounds, indicated that monomeric compounds have square pyramidal shape. Both antileishmanial activity against Leishmania tropica promastigote and glutathione reductase inhibitory activity were determined in vitro. The results showed that (3) has the best biological activity.


Assuntos
Antimônio/química , Complexos de Coordenação/síntese química , Pirimidinas/química , Cromatografia Líquida de Alta Pressão , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cristalografia por Raios X , Glutationa Redutase/antagonistas & inibidores , Glutationa Redutase/metabolismo , Concentração Inibidora 50 , Leishmania tropica/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Conformação Molecular , Ligação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier
11.
J Photochem Photobiol B ; 137: 156-67, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24418071

RESUMO

Thirty novel chemical compounds were designed and synthesized expecting that they would be possible inhibitors. From this number eleven were organic bases, twenty-four were their organic derivatives and fourteen were metal complexes. Screening of these chemicals by their action on photosynthetic electron transfer (PET) and carbonic anhydrase (CA) activity (CAA) of photosystem II (PSII), α-CA, as well as ß-CA was done. Several groups were revealed among them. Some of them are capable to suppress either one, two, three, or even all of the measured activities. As example, one of the Cu(II)-phenyl sulfonylhydrazone complexes (compound 25) suppresses CAA of α-CA by 88%, CAA of ß-CA by 100% inhibition; CAA of PSII by 100% and the PSII photosynthetic activity by 66.2%. The Schiff base compounds (12, 15) and Cu(II)-phenyl sulfonylhydrazone complexes (25, 26) inhibited the CAA and PET of PSII significantly. The obtained data indicate that the PSII donor side is a target of the inhibitory action of these agents. Some physico- or electrochemical properties such as diffusion coefficient, number of transferred electrons, peak potential and heterogeneous standard rate constants of the compounds were determined in nonaqueous media. pKa values were also determined in nonaqueous and aqueous media. Availability in the studied group of novel chemical agents possessing different inhibitory activity allow in future to isolate the "active part" in the structure of the inhibitors responsible for different inhibitory mechanisms, as well as to determine the influence of side substituters on its inhibitory efficiency.


Assuntos
Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Complexo de Proteína do Fotossistema II/metabolismo , Avaliação Pré-Clínica de Medicamentos , Eletroquímica , Compostos Organometálicos/farmacologia , Pisum sativum/enzimologia , Processos Fotoquímicos , Complexo de Proteína do Fotossistema II/química
12.
Artigo em Inglês | MEDLINE | ID: mdl-23466322

RESUMO

Copper(II), nickel(II), platinum(II) and palladium(II) complexes with 2-hydroxy-1-naphthaldehyde-N-methylpropanesulfonylhydrazone (nafpsmh) derived from propanesulfonic acid-1-methylhydrazide (psmh) were synthesized, their structure were identified, and antimicrobial activity of the compounds was screened against three Gram-positive and three Gram-negative bacteria. The results of antimicrobial studies indicate that Pt(II) and Pd(II) complexes showed the most activity against all bacteria. The crystal structure of 2-hydroxy-1-naphthaldehyde-N-methylpropanesulfonylhydrazone (nafpsmh) was also investigated by X-ray analysis. A series of Ni(II) sulfonyl hydrazone complexes (1-33) was synthesized and tested in vitro against Escherichia coli and Staphylococcus aureus. Their antimicrobial activities were used in the QSAR analysis. Four-parameter QSAR models revealed that nucleophilic reaction index for Ni and O atoms, and HOMO-LUMO energy gap play key roles in the antimicrobial activity.


Assuntos
Anti-Infecciosos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Hidrazonas/síntese química , Hidrazonas/farmacologia , Níquel/farmacologia , Relação Quantitativa Estrutura-Atividade , Antibacterianos/farmacologia , Anti-Infecciosos/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Hidrazonas/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Conformação Molecular , Espectrofotometria Infravermelho , Staphylococcus aureus/efeitos dos fármacos
13.
Artigo em Inglês | MEDLINE | ID: mdl-22999163

RESUMO

Benzenesulfonicacid-1-methylhydrazide (1) and its four aromatic sulfonyl hydrazone derivatives (1a-1d), N-(3-amino-2-hydroxypropyl)benzene sulfonamide (2) and N-(2-hydroxyethyl)benzenesulfonamide (3) were synthesized and their structures were determined by IR, (1)H NMR, (13)C NMR, and LCMS techniques. Antibacterial activities of new synthesized compounds were evaluated against various bacteria strains by microdilution and disk diffusion methods. The experimental results show that presence of OH group on sulfonamides reduces the antimicrobial activity, and antimicrobial activities of the sulfonyl hydrazones (1a-1d) are smaller than that of the parent sulfonamide (1), except Candida albicans. In addition, 2D-QSAR analysis was performed on 28 aromatic sulfonyl hydrazones as antimicrobial agents against Escherichia coli and Staphylococcus aureus. In the QSAR models, the most important descriptor is total point-charge component of the molecular dipole for E. coli, and partial negative surface area (PNSA-1) for S. aureus.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Hidrazonas/química , Hidrazonas/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Relação Quantitativa Estrutura-Atividade , Staphylococcus aureus/efeitos dos fármacos
14.
Artigo em Inglês | MEDLINE | ID: mdl-22349891

RESUMO

A conformational analysis of the methanesulfonamide-N,N'-1,2-ethanediylbis (msen) was performed by using vibrational and NMR spectroscopies as well as theoretical computations. The possible stable conformers of msen on its potential energy surface were investigated by semi-empirical PM5 method and appropriate structures were defined with B3LYP hybrid density functional theory (DFT) method along with the basis sets of different size and type. Six different rotational isomers were found as the result of DFT calculation. The two isomer, called trans-trans-gauche(+)-eclipsed, synperiplanar (ttg(+)-e,bis) and trans-gauche(+)-gauche(-)-staggered, antiplanar (tg(+)g(-)-s,anti), were considered in the vibrational spectral analysis. The infrared (4000-30 cm(-1)) and Raman (4000-60 cm(-1)) spectra of msen were measured in solid state. For a complete assignment of the vibrational spectra, DFT calculations at B3LYP/6311-G(d,p) theory level combined with scaled quantum mechanics force field (SQMFF) methodology was performed. Furthermore, (13)C and (1)H NMR analyses were performed for six conformers at B3LYP/6-311++G(d,p) level of theory and compared with the experimental findings. Results from experimental and theoretical data showed the ttg(+)-e,bis to be the most stable form of a msen molecule.


Assuntos
Anti-Infecciosos/química , Etano/análogos & derivados , Sulfonamidas/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Estereoisomerismo
15.
Bioorg Med Chem ; 15(15): 5105-9, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17544281

RESUMO

A series of novel aliphatic sulfonamide derivatives (1-7) were synthesized and characterized by elemental analyses, FT-IR, (1)H NMR, (13)C NMR and LC-MS techniques. All the synthesized compounds were evaluated in vitro as antimicrobial agents against representative strains of Gram-positive (Staphylococcus aureus ATCC 25953, Bacillus cereus ATCC 6633 and Listeria monocytogenes ATCC Li6 (isolate), Gram-negative bacteria (Escherichia coli ATCC 11230) and antifungal agent against Candida albicans (clinical isolate) by both disc diffusion and minimal inhibition concentration (MIC) methods. All these bacteria and fungus studied were screened against some antibiotics to compare with our chemicals' zone diameters. Our aliphatic sulfonamides have highest powerful antibacterial activity for Gram-negative bacteria than Gram-positive bacteria and antibacterial activity decreases as the length of the carbon chain increases.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Bactérias/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA