Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 16, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273363

RESUMO

BACKGROUND: Understanding genome organization and evolution is important for species involved in transmission of human diseases, such as mosquitoes. Anophelinae and Culicinae subfamilies of mosquitoes show striking differences in genome sizes, sex chromosome arrangements, behavior, and ability to transmit pathogens. However, the genomic basis of these differences is not fully understood. METHODS: In this study, we used a combination of advanced genome technologies such as Oxford Nanopore Technology sequencing, Hi-C scaffolding, Bionano, and cytogenetic mapping to develop an improved chromosome-scale genome assembly for the West Nile vector Culex quinquefasciatus. RESULTS: We then used this assembly to annotate odorant receptors, odorant binding proteins, and transposable elements. A genomic region containing male-specific sequences on chromosome 1 and a polymorphic inversion on chromosome 3 were identified in the Cx. quinquefasciatus genome. In addition, the genome of Cx. quinquefasciatus was compared with the genomes of other mosquitoes such as malaria vectors An. coluzzi and An. albimanus, and the vector of arboviruses Ae. aegypti. Our work confirms significant expansion of the two chemosensory gene families in Cx. quinquefasciatus, as well as a significant increase and relocation of the transposable elements in both Cx. quinquefasciatus and Ae. aegypti relative to the Anophelines. Phylogenetic analysis clarifies the divergence time between the mosquito species. Our study provides new insights into chromosomal evolution in mosquitoes and finds that the X chromosome of Anophelinae and the sex-determining chromosome 1 of Culicinae have a significantly higher rate of evolution than autosomes. CONCLUSION: The improved Cx. quinquefasciatus genome assembly uncovered new details of mosquito genome evolution and has the potential to speed up the development of novel vector control strategies.


Assuntos
Aedes , Culex , Animais , Humanos , Masculino , Filogenia , Elementos de DNA Transponíveis/genética , Mosquitos Vetores/genética , Culex/genética , Aedes/genética , Cromossomos , Evolução Molecular
2.
Malar J ; 20(1): 141, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33691700

RESUMO

BACKGROUND: The malaria mosquito Anopheles punctipennis, a widely distributed species in North America, is capable of transmitting human malaria and is actively involved in the transmission of the ungulate malaria parasite Plasmodium odocoilei. However, molecular diagnostic tools based on Internal Transcribed Spacer 2 (ITS2) of ribosomal DNA are lacking for this species. Anopheles punctipennis is a former member of the Anopheles maculipennis complex but its systematic position remains unclear. METHODS: In this study, ITS2 sequences were obtained from 276 An. punctipennis specimens collected in the eastern and midwestern United States and a simple and robust Restriction Fragment Length Polymorphism approach for species identification was developed. The maximum-likelihood phylogenetic tree was constructed based on ITS2 sequences available through this study and from GenBank for 20 species of Anopheles. RESULTS: The analysis demonstrated a consistent ITS2 sequence length and showed no indications of intragenomic variation among the samples based on ITS2, suggesting that An. punctipennis represents a single species in the studied geographic locations. In this study, An. punctipennis was found in urban, rural, and forest settings, suggesting its potential broad role in pathogen transmission. Phylogeny based on ITS2 sequence comparison demonstrated the close relationship of this species with other members of the Maculipennis group. CONCLUSIONS: This study developed molecular tools based on ITS2 sequences for the malaria vector An. punctipennis and clarified the phylogenetic position of the species within the Maculipennis group.


Assuntos
Distribuição Animal , Anopheles/classificação , DNA Espaçador Ribossômico/análise , Mosquitos Vetores/classificação , Polimorfismo de Fragmento de Restrição , Animais , Anopheles/genética , Anopheles/fisiologia , Florida , Iowa , Malária/transmissão , Minnesota , Mosquitos Vetores/genética , Mosquitos Vetores/fisiologia , Virginia
3.
PeerJ ; 11: e14063, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36643636

RESUMO

The GAGA protein (also known as GAF) is a transcription factor encoded by the Trl gene in D. melanogaster. GAGA is involved in the regulation of transcription of many genes at all stages of fly development and life. Recently, we investigated the participation of GAGA in spermatogenesis and discovered that Trl mutants experience massive degradation of germline cells in the testes. Trl underexpression induces autophagic death of spermatocytes, thereby leading to reduced testis size. Here, we aimed to determine the role of the transcription factor GAGA in the regulation of ectopic germline cell death. We investigated how Trl underexpression affects gene expression in the testes. We identified 15,993 genes in three biological replicates of our RNA-seq analysis and compared transcript levels between hypomorphic Trl R85/Trl 362 and Oregon testes. A total of 2,437 differentially expressed genes were found, including 1,686 upregulated and 751 downregulated genes. At the transcriptional level, we detected the development of cellular stress in the Trl-mutant testes: downregulation of the genes normally expressed in the testes (indicating slowed or abrogated spermatocyte differentiation) and increased expression of metabolic and proteolysis-related genes, including stress response long noncoding RNAs. Nonetheless, in the Flybase Gene Ontology lists of genes related to cell death, autophagy, or stress, there was no enrichment with GAGA-binding sites. Furthermore, we did not identify any specific GAGA-dependent cell death pathway that could regulate spermatocyte death. Thus, our data suggest that GAGA deficiency in male germline cells leads to an imbalance of metabolic processes, impaired mitochondrial function, and cell death due to cellular stress.


Assuntos
Proteínas de Drosophila , Espermatogênese , Fatores de Transcrição , Animais , Masculino , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Células Germinativas/metabolismo , Espermatogênese/genética , Fatores de Transcrição/genética , Transcriptoma
4.
Insects ; 12(2)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33561960

RESUMO

Long-read sequencing technologies have opened up new avenues of research on the mosquito genome biology, enabling scientists to better understand the remarkable abilities of vectors for transmitting pathogens. Although new genome mapping technologies such as Hi-C scaffolding and optical mapping may significantly improve the quality of genomes, only cytogenetic mapping, with the help of fluorescence in situ hybridization (FISH), connects genomic scaffolds to a particular chromosome and chromosome band. This mapping approach is important for creating and validating chromosome-scale genome assemblies for mosquitoes with repeat-rich genomes, which can potentially be misassembled. In this study, we describe a new gene-based physical mapping approach that was optimized using the newly assembled Aedes albopictus genome, which is enriched with transposable elements. To avoid amplification of the repetitive DNA, 15 protein-coding gene transcripts were used for the probe design. Instead of using genomic DNA, complementary DNA was utilized as a template for development of the PCR-amplified probes for FISH. All probes were successfully amplified and mapped to specific chromosome bands. The genome-unique probes allowed to perform unambiguous mapping of genomic scaffolds to chromosome regions. The method described in detail here can be used for physical genome mapping in other insects.

5.
Insects ; 12(9)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34564275

RESUMO

The Eurasian malaria vector Anopheles messeae is a widely spread and genetically diverse species. Five widespread polymorphic chromosomal inversions were found in natural populations of this mosquito. A cryptic species, Anopheles daciae, was differentiated from An. messeae by the presence of several nucleotide substitutions in the Internal Transcribed Spacer 2 (ITS2) region of ribosomal DNA. However, because of the absence of a high-quality reference cytogenetic map, the inversion polymorphisms in An. daciae and An. messeae remain poorly understood. Moreover, a recently determined heterogeneity in ITS2 in An. daciae questioned the accuracy of the previously used Restriction Fragment Length Polymorphism (RFLP) assay for species diagnostics. In this study, a standard-universal cytogenetic map was constructed based on orcein stained images of chromosomes from salivary glands for population studies of the chromosomal inversions that can be used for both An. messeae and An. daciae. In addition, a new ITS2-RFLP approach for species diagnostics was developed. Both methods were applied to characterize inversion polymorphism in populations of An. messeae and An. daciae from a single location in Western Siberia in Russia. The analysis demonstrates that cryptic species are remarkably different in their frequencies of chromosomal inversion variants. Our study supports previous observations that An. messeae has higher inversion polymorphism in all autosomes than the cryptic species An. daciae.

6.
Genes (Basel) ; 11(2)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033356

RESUMO

Chromosomal inversions are important drivers of genome evolution. The Eurasian malaria vector Anophelesmesseae has five polymorphic inversions. A cryptic species, An. daciae, has been discriminated from An. messeae based on five fixed nucleotide substitutions in the internal transcribed spacer 2 (ITS2) of ribosomal DNA. However, the inversion polymorphism in An. daciae and the genome divergence between these species remain unexplored. In this study, we sequenced the ITS2 region and analyzed the inversion frequencies of 289 Anopheles larvae specimens collected from three locations in the Moscow region. Five individual genomes for each of the two species were sequenced. We determined that An. messeae and An. daciae differ from each other by the frequency of polymorphic inversions. Inversion X1 was fixed in An. messeae but polymorphic in An. daciae populations. The genome sequence comparison demonstrated genome-wide divergence between the species, especially pronounced on the inversion-rich X chromosome (mean Fst = 0.331). The frequency of polymorphic autosomal inversions was higher in An. messeae than in An. daciae. We conclude that the X chromosome inversions play an important role in the genomic differentiation between the species. Our study determined that An. messeae and An. daciae are closely related species with incomplete reproductive isolation.


Assuntos
Anopheles/classificação , Anopheles/genética , Cromossomos/genética , DNA Espaçador Ribossômico/análise , Genes de Insetos , Mosquitos Vetores/genética , Polimorfismo Genético , Animais , Anopheles/parasitologia , Inversão Cromossômica , Genoma , Malária/parasitologia , Mosquitos Vetores/crescimento & desenvolvimento , Mosquitos Vetores/parasitologia , Especificidade da Espécie , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA