RESUMO
Dengue is a major health threat and the number of symptomatic infections caused by the four dengue serotypes is estimated to be 96 million1 with annually around 10,000 deaths2. However, no antiviral drugs are available for the treatment or prophylaxis of dengue. We recently described the interaction between non-structural proteins NS3 and NS4B as a promising target for the development of pan-serotype dengue virus (DENV) inhibitors3. Here we present JNJ-1802-a highly potent DENV inhibitor that blocks the NS3-NS4B interaction within the viral replication complex. JNJ-1802 exerts picomolar to low nanomolar in vitro antiviral activity, a high barrier to resistance and potent in vivo efficacy in mice against infection with any of the four DENV serotypes. Finally, we demonstrate that the small-molecule inhibitor JNJ-1802 is highly effective against viral infection with DENV-1 or DENV-2 in non-human primates. JNJ-1802 has successfully completed a phase I first-in-human clinical study in healthy volunteers and was found to be safe and well tolerated4. These findings support the further clinical development of JNJ-1802, a first-in-class antiviral agent against dengue, which is now progressing in clinical studies for the prevention and treatment of dengue.
Assuntos
Antivirais , Vírus da Dengue , Dengue , Primatas , Proteínas não Estruturais Virais , Animais , Humanos , Camundongos , Antivirais/efeitos adversos , Antivirais/farmacologia , Antivirais/uso terapêutico , Ensaios Clínicos Fase I como Assunto , Dengue/tratamento farmacológico , Dengue/prevenção & controle , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/efeitos dos fármacos , Relação Dose-Resposta a Droga , Farmacorresistência Viral , Técnicas In Vitro , Terapia de Alvo Molecular , Primatas/virologia , Ligação Proteica/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Replicação ViralRESUMO
The modestly efficacious HIV-1 vaccine regimen (RV144) conferred 31% vaccine efficacy at 3 years following the four-shot immunization series, coupled with rapid waning of putative immune correlates of decreased infection risk. New strategies to increase magnitude and durability of protective immunity are critically needed. The RV305 HIV-1 clinical trial evaluated the immunological impact of a follow-up boost of HIV-1-uninfected RV144 recipients after 6-8 years with RV144 immunogens (ALVAC-HIV alone, AIDSVAX B/E gp120 alone, or ALVAC-HIV + AIDSVAX B/E gp120). Previous reports demonstrated that this regimen elicited higher binding, antibody Fc function, and cellular responses than the primary RV144 regimen. However, the impact of the canarypox viral vector in driving antibody specificity, breadth, durability and function is unknown. We performed a follow-up analysis of humoral responses elicited in RV305 to determine the impact of the different booster immunogens on HIV-1 epitope specificity, antibody subclass, isotype, and Fc effector functions. Importantly, we observed that the ALVAC vaccine component directly contributed to improved breadth, function, and durability of vaccine-elicited antibody responses. Extended boosts in RV305 increased circulating antibody concentration and coverage of heterologous HIV-1 strains by V1V2-specific antibodies above estimated protective levels observed in RV144. Antibody Fc effector functions, specifically antibody-dependent cellular cytotoxicity and phagocytosis, were boosted to higher levels than was achieved in RV144. V1V2 Env IgG3, a correlate of lower HIV-1 risk, was not increased; plasma Env IgA (specifically IgA1), a correlate of increased HIV-1 risk, was elevated. The quality of the circulating polyclonal antibody response changed with each booster immunization. Remarkably, the ALVAC-HIV booster immunogen induced antibody responses post-second boost, indicating that the viral vector immunogen can be utilized to selectively enhance immune correlates of decreased HIV-1 risk. These results reveal a complex dynamic of HIV-1 immunity post-vaccination that may require careful balancing to achieve protective immunity in the vaccinated population. Trial registration: RV305 clinical trial (ClinicalTrials.gov number, NCT01435135). ClinicalTrials.gov Identifier: NCT00223080.
Assuntos
Vacinas contra a AIDS , Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Formação de Anticorpos , Infecções por HIV/prevenção & controle , Imunização Secundária/métodos , Especificidade de Anticorpos , Anticorpos Anti-HIV , Proteína gp120 do Envelope de HIVRESUMO
Emergence of novel variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean serum neutralizing antibody titers of 14,000 to 21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within 4 d in seven of eight animals receiving 50 µg of RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only approximately twofold relative to WA1/2020. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-CoV-like Sarbecovirus vaccine development.
Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/virologia , Macaca mulatta/imunologia , Nanopartículas/química , Receptores Virais/metabolismo , SARS-CoV-2/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Ferritinas/química , SARS-CoV-2/metabolismo , Linfócitos T/imunologiaRESUMO
The RV144 HIV-1 trial of the canary pox vector (ALVAC-HIV) plus the gp120 AIDSVAX B/E vaccine demonstrated an estimated efficacy of 31%, which correlated directly with antibodies to HIV-1 envelope variable regions 1 and 2 (V1-V2). Genetic analysis of trial viruses revealed increased vaccine efficacy against viruses matching the vaccine strain at V2 residue 169. Here, we isolated four V2 monoclonal antibodies from RV144 vaccinees that recognize residue 169, neutralize laboratory-adapted HIV-1, and mediate killing of field-isolate HIV-1-infected CD4(+) T cells. Crystal structures of two of the V2 antibodies demonstrated that residue 169 can exist within divergent helical and loop conformations, which contrasted dramatically with the ß strand conformation previously observed with a broadly neutralizing antibody PG9. Thus, RV144 vaccine-induced immune pressure appears to target a region that may be both sequence variable and structurally polymorphic. Variation may signal sites of HIV-1 envelope vulnerability, providing vaccine designers with new options.
Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Sequência de Aminoácidos , Substituição de Aminoácidos/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologia , Peptídeos/metabolismo , Ligação Proteica/imunologia , Conformação ProteicaRESUMO
Background: The RV144 ALVAC-HIV prime, AIDSVAX B/E boost afforded 60% efficacy against human immunodeficiency virus (HIV) acquisition at 1 year, waning to 31.2% after 3.5 years. We hypothesized that additional vaccinations might augment immune correlates of protection. Methods: In a randomized placebo-controlled double-blind study of 162 HIV-negative RV144 vaccine recipients, we evaluated 2 additional boosts, given 6-8 years since RV144 vaccination, for safety and immunogenicity, at weeks 0 and 24. Study groups 1-3 received ALVAC-HIV+AIDSVAX B/E, AIDSVAX B/E, and ALVAC-HIV, respectively, or placebo. Results: Vaccines were well tolerated. For groups 1 and 2, plasma immunoglobulin (Ig) G, IgA, and neutralizing antibody responses at week 2 were all significantly higher than 2 weeks after the last RV144 vaccination. IgG titers against glycoprotein (gp) 70V1V2 92TH023 increased 14-fold compared with 2 weeks after the last RV144 vaccination (14069 vs 999; P < .001). Groups 1 and 2 did not differ significantly from each other, whereas group 3 was similar to placebo recipients. Responses in groups 1 and 2 declined by week 24 but were boosted by the second vaccination, albeit at lower magnitude than for week 2. Conclusions: In RV144 vaccinees, AIDSVAX B/E with or without ALVAC-HIV 6-8 years after initial vaccination generated higher humoral responses than after RV144, but these responses were short-lived, and their magnitude did not increase with subsequent boost. Clinical Trials Registration: NCT01435135.
Assuntos
Vacinas contra a AIDS/administração & dosagem , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/prevenção & controle , Imunidade Humoral , Imunização Secundária , Adulto , Anticorpos Neutralizantes/sangue , Citocinas/imunologia , Método Duplo-Cego , Feminino , Anticorpos Anti-HIV/sangue , HIV-1 , Voluntários Saudáveis , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Masculino , TailândiaRESUMO
BACKGROUND: In the RV144 trial, the estimated efficacy of a vaccine regimen against human immunodeficiency virus type 1 (HIV-1) was 31.2%. We performed a case-control analysis to identify antibody and cellular immune correlates of infection risk. METHODS: In pilot studies conducted with RV144 blood samples, 17 antibody or cellular assays met prespecified criteria, of which 6 were chosen for primary analysis to determine the roles of T-cell, IgG antibody, and IgA antibody responses in the modulation of infection risk. Assays were performed on samples from 41 vaccinees who became infected and 205 uninfected vaccinees, obtained 2 weeks after final immunization, to evaluate whether immune-response variables predicted HIV-1 infection through 42 months of follow-up. RESULTS: Of six primary variables, two correlated significantly with infection risk: the binding of IgG antibodies to variable regions 1 and 2 (V1V2) of HIV-1 envelope proteins (Env) correlated inversely with the rate of HIV-1 infection (estimated odds ratio, 0.57 per 1-SD increase; P=0.02; q=0.08), and the binding of plasma IgA antibodies to Env correlated directly with the rate of infection (estimated odds ratio, 1.54 per 1-SD increase; P=0.03; q=0.08). Neither low levels of V1V2 antibodies nor high levels of Env-specific IgA antibodies were associated with higher rates of infection than were found in the placebo group. Secondary analyses suggested that Env-specific IgA antibodies may mitigate the effects of potentially protective antibodies. CONCLUSIONS: This immune-correlates study generated the hypotheses that V1V2 antibodies may have contributed to protection against HIV-1 infection, whereas high levels of Env-specific IgA antibodies may have mitigated the effects of protective antibodies. Vaccines that are designed to induce higher levels of V1V2 antibodies and lower levels of Env-specific IgA antibodies than are induced by the RV144 vaccine may have improved efficacy against HIV-1 infection.
Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/sangue , Infecções por HIV/imunologia , HIV-1/imunologia , Adulto , Estudos de Casos e Controles , Seguimentos , Infecções por HIV/prevenção & controle , Humanos , Imunoglobulina A/sangue , Análise Multivariada , Razão de Chances , Análise de Regressão , Risco , Resultado do TratamentoRESUMO
PXVX0047 is an investigational vaccine developed for active immunization to prevent febrile acute respiratory disease (ARD) caused by adenovirus serotypes 4 (Ad4) and 7 (Ad7). PXVX0047 consists of a modernized, plasmid-derived vaccine that was generated using a virus isolated from Wyeth Ad4 and Ad7 vaccine tablets. A phase 1 two-arm, randomized, double-blind, active-controlled study was conducted to evaluate the safety profile and immunogenicity of the investigational adenovirus vaccines. The two components of PXVX0047 were administered orally together in a single dose to 11 subjects. For comparison, three additional subjects received the Ad4/Ad7 vaccine that is currently in use by the US military. The results of this study show that the tolerability and immunogenicity of the PXVX0047 Ad7 component are comparable with that of the control Ad4/Ad7 vaccine; however, the immunogenicity of the PXVX0047 Ad4 component was lower than expected. Clinical trial number NCT03160339.
RESUMO
The FDA-approved Adenovirus Type 4 and Type 7 Vaccine, Live, Oral is highly effective and essential in preventing acute respiratory diseases (ARDs) in U.S. military recruits. Our study revealed the presence of a previously undetected mutation, not found in the wild-type human adenovirus type 4 (HAdV-4) component of the licensed vaccine, which contains an amino acid substitution (P388T) in the pre-terminal protein (pTP). This study demonstrated that replication of the T388 HAdV-4 vaccine mutant virus is favored over the wild type in WI-38 cells, the cell type utilized in vaccine manufacturing. However, results from serial human stool specimens of vaccine recipients support differential genome replication in the gastrointestinal tract (GI), demonstrated by the steady decline of the percentage of mutant T388 vaccine virus. Since vaccine efficacy depends upon GI replication and the subsequent immune response, the mutation can potentially impact vaccine efficacy.
RESUMO
Here, we report two complete genome sequences of human adenovirus 55 (HAdV-55) isolates, from a patient in Pennsylvania in 2006 and a U.S. military member in South Korea in 2019. The findings demonstrate the continued global transmission of HAdV-55 viruses in both military and civilian populations.
RESUMO
Emergence of novel variants of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean neutralizing antibody titers of 14,000-21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within four days in 7 of 8 animals receiving 50 µg RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only â¼2-fold relative to USA-WA1. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-like betacoronavirus vaccine development. SIGNIFICANCE STATEMENT: The emergence of SARS-CoV-2 variants of concern (VOC) that reduce the efficacy of current COVID-19 vaccines is a major threat to pandemic control. We evaluate a SARS-CoV-2 Spike receptor-binding domain ferritin nanoparticle protein vaccine (RFN) in a nonhuman primate challenge model that addresses the need for a next-generation, efficacious vaccine with increased pan-SARS breadth of coverage. RFN, adjuvanted with a liposomal-QS21 formulation (ALFQ), elicits humoral and cellular immune responses exceeding those of current vaccines in terms of breadth and potency and protects against high-dose respiratory tract challenge. Neutralization activity against the B.1.351 VOC within two-fold of wild-type virus and against SARS-CoV-1 indicate exceptional breadth. Our results support consideration of RFN for SARS-like betacoronavirus vaccine development.
RESUMO
Two human mAbs (2F5 and 4E10), originally derived from HIV-1-infected patients, are important, but rare, mAbs that exhibit broad cross-clade neutralizing activities against HIV-1. In addition to peptide sequences on the gp41 envelope protein, both antibodies reportedly also bound specifically to several phospholipid antigens. However, the phospholipid binding property of 2F5 has been disputed and, because of uncertainly regarding phospholipid binding, the modeling of neutralizing mechanisms has been difficult. To explore this issue, we examined the binding of 4E10 and 2F5 to a broad range of lipid antigens by ELISA. 4E10 and 2F5 both bound to a variety of purified phospholipids, and 4E10 bound, but 2F5 did not bind, to cardiolipin. Both mAbs also bound to a sulfated glycolipid, sulfogalactosyl ceramide (sulfatide), and to two neutral glycolipids, galactosyl ceramide and glucosyl ceramide, but not to other galactosyl glycolipids. 4E10, but not 2F5, also bound to cholesterol, although both mAbs bound to squalene. Interestingly, 4E10, but not 2F5, exhibited striking binding to lipid A, the lipid moiety of Gram-negative bacterial lipopolysaccharide. The binding properties of 4E10 to phospholipids, sulfatide, cholesterol, squalene, and lipid A were similar to those of a neutralizing murine mAb (WR304) induced by liposomes containing phosphatidylinositol phosphate and lipid A, although WR304 did not bind to neutral glycolipids. The discovery of a binding specificity of 4E10 for lipid A, a widely used vaccine adjuvant, suggests that innate immunity stimulated by lipid A could have played a role for induction of multispecific antibodies that simultaneously recognize both HIV-1 protein and lipid antigens.
Assuntos
Anticorpos Monoclonais/química , HIV-1/imunologia , Lipídeos/química , Anticorpos Monoclonais/imunologia , Colesterol/química , Ensaio de Imunoadsorção Enzimática , Humanos , Lipídeo A/química , Fosfolipídeos/química , Esqualeno/químicaRESUMO
Human adenoviruses (AdV) are mostly associated with minimal pathology. However, more severe respiratory tract infections and acute respiratory diseases, most often caused by AdV-4 and AdV-7, have been reported. The only licensed vaccine in the United States, live oral AdV-4 and AdV-7 vaccine, is indicated for use in the military, nearly exclusively in recruit populations. The excellent safety profile and prominent antibody response of the vaccine is well established by placebo-controlled clinical trials, while, long-term immunity of vaccination has not been studied. Serum samples collected over 6 years from subjects co-administered live oral AdV-4 and AdV-7 vaccine in 2011 were evaluated to determine the duration of the antibody response. Group geometric mean titers (GMT) at 6 years post vaccination compared to previous years evaluated were not significantly different for either AdV-4 or AdV-7 vaccine components. There were no subjects that demonstrated waning neutralization antibody (NAb) titers against AdV-4 and less than 5% of subjects against AdV-7. Interestingly, there were subjects that had a four-fold increase in NAb titers against either AdV-4 or AdV-7, at various time points post vaccination, suggesting either homotypic or heterotypic re-exposure. This investigation provided strong evidence that the live oral AdV-4 and AdV-7 vaccine induced long-term immunity to protect from AdV-4 and AdV-7 infections.
RESUMO
BACKGROUND: The RV144 phase 3 vaccine trial in Thailand demonstrated that ALVAC-HIV (vCP1521) and AIDSVAX B/E administration over 6 months resulted in a 31% efficacy in preventing HIV acquisition. In this trial, we assessed the immunological effect of an additional vaccine boost to the RV144 regimen at varying intervals between the priming vaccine series and the boost. METHODS: RV306 is a double-blind, placebo-controlled, randomised clinical trial done at three clinical sites in Thailand. Eligible volunteers were HIV-uninfected individuals aged 20-40 years who were at low risk for HIV infection and in good health. A randomisation schedule was centrally generated with fixed sized strata for Research Institute for Health Sciences Chiang Mai and combined Bangkok clinics. Participants were randomly assigned to one of five groups and then further randomly assigned to either vaccine or placebo. All participants received the primary RV144 vaccine series at months 0, 1, 3, and 6. Group 1 received no additional boost, group 2 received additional AIDSVAX B/E and ALVAC-HIV (vCP1521) or placebo at month 12, group 3 received AIDSVAX B/E alone or placebo at month 12, group 4a received AIDSVAX B/E and ALVAC-HIV or placebo at month 15, and group 4b received AIDSVAX B/E and ALVAC-HIV or placebo at month 18. Primary outcomes were safety and tolerability of these vaccination regimens and cellular and humoral immune responses compared between the RV144 series alone and regimens with late boosts at different timepoints. Safety and tolerability outcomes were assessed by evaluating local and systemic reactogenicity and adverse events in all participants. This trial is registered at ClinicalTrials.gov (NCT01931358); clinical follow-up is now complete. FINDINGS: Between Oct 28, 2013, and April 29, 2014, 367 participants were enrolled, of whom 27 were assigned active vaccination in group 1, 102 in group 2, 101 in group 3, 52 in group 4a, 51 in group 4b, and 34 combined placebo across all the groups. No vaccine-related serious adverse events were recorded. Occurrence and severity of local and systemic reactogenicity were similar across active groups. Groups with late boosts (groups 2, 3, 4a, and 4b) had increased peak plasma IgG-binding antibody levels against gp70 V1V2 relative to group 1 vaccine recipients with no late boost (gp70 V1V2 92TH023 adjusted p<0·02 for each; gp70 V1V2 CaseA2 adjusted p<0·0001 for each). Boosting at month 12 (groups 2 and 3) did not increase gp120 responses compared with the peak responses after the RV144 priming regimen at month 6; however, boosting at month 15 (group 4a) improved responses to gp120 A244gD- D11 (p=0·0003), and boosting at month 18 (group 4b) improved responses to both gp120 A244gD- D11 (p<0·0001) and gp120 MNgD- D11 (p=0·0016). Plasma IgG responses were significantly lower among vaccine recipients boosted at month 12 (pooled groups 2â+â3) than at month 15 (group 4a; adjusted p<0·0001 for each, except for gp70 V1V2 CaseA2, p=0·0142) and at month 18 (group 4b; all adjusted p<0·001). Boosting at month 18 versus month 15 resulted in a significantly higher plasma IgG response to gp120 antigens (all adjusted p<0·01) but not gp70 V1V2 antigens. CD4 functionality and polyfunctionality scores after stimulation with HIV-1 Env peptides (92TH023) increased with delayed boosting. Groups with late boosts had increased functionality and polyfunctionality scores relative to vaccine recipients with no late boost (all adjusted p<0·05, except for the polyfunctionality score in group 1 vs group 4b, p<0·01). INTERPRETATION: Taken together, these results suggest that additional boosting of the RV144 regimen with longer intervals between the primary vaccination series and late boost improved immune responses and might improve the efficacy of preventing HIV acquisition. FUNDING: US National Institute of Allergy and Infectious Diseases and US Department of the Army.
Assuntos
Vacinas contra a AIDS/administração & dosagem , Infecções por HIV/prevenção & controle , Vacinas contra a AIDS/imunologia , Adulto , Método Duplo-Cego , Feminino , HIV/genética , HIV/imunologia , Infecções por HIV/virologia , Humanos , Imunização Secundária , Masculino , Tailândia , Adulto JovemRESUMO
Natural polyreactive antibodies can accommodate chemically unrelated epitopes, such as lipids and proteins, in a single antigen binding site. Because liposomes containing lipid A as an adjuvant can induce antibodies directed against specific lipids, we immunized mice with liposomes containing lipid A together with a protein or peptide antigen to determine whether monoclonal antibodies generated after immunization would be specifically directed both to the liposomal lipid (either cholesterol or galactosylceramide) and also to the accompanying liposomal protein or peptide. Monoclonal antibodies were obtained that bound, by ELISA, to cholesterol and to recombinant gp140 envelope protein from HIV-1, or to galactosylceramide and to an HIV-1 envelope peptide. Surface plasmon resonance studies with the former antibody showed that the liposomal cholesterol and liposomal gp140 each contributed to the overall binding energy of the antibody to liposomes containing cholesterol and protein.
Assuntos
Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Lipídeo A/metabolismo , Lipossomos/imunologia , Proteínas/metabolismo , Animais , Colesterol/metabolismo , Ensaio de Imunoadsorção Enzimática , Cinética , Camundongos , Peptídeos/metabolismo , Ressonância de Plasmônio de Superfície , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismoRESUMO
Sexual transmission is the principal driver of the human immunodeficiency virus (HIV) pandemic. Understanding HIV vaccine-induced immune responses at mucosal surfaces can generate hypotheses regarding mechanisms of protection, and may influence vaccine development. The RV144 (ClinicalTrials.gov NCT00223080) efficacy trial showed protection against HIV infections but mucosal samples were not collected, therefore, the contribution of mucosal antibodies to preventing HIV-1 acquisition is unknown. Here, we report the generation, magnitude and persistence of antibody responses to recombinant gp120 envelope and antigens including variable one and two loop scaffold antigens (gp70V1V2) previously shown to correlate with risk in RV144. We evaluated antibody responses to gp120 A244gD and gp70V1V2 92TH023 (both CRF01_AE) and Case A2 (subtype B) in cervico-vaginal mucus (CVM), seminal plasma (SP) and rectal secretions (RS) from HIV-uninfected RV144 vaccine recipients, who were randomized to receive two late boosts of ALVAC-HIV/AIDSVAX®B/E, AIDSVAX®B/E, or ALVAC-HIV alone at 0 and 6 months. Late vaccine boosting increased IgG geometric mean titers (GMT) to gp120 A244gD in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM (28 and 17 fold, respectively), followed by SP and RS. IgG to gp70V1V2 92TH023 increased in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM (11-17 fold) and SP (2 fold) two weeks post first boost. IgG to Case A2 was only detected in AIDSVAX®B/E and ALVAC-HIV/AIDSVAX®B/E CVM. Mucosal IgG to gp120 A244gD (CVM, SP, RS), gp70V1V2 92TH023 (CVM, SP), and Case A2 (CVM) correlated with plasma IgG levels (p<0.001). Although the magnitude of IgG responses declined after boosting, anti-gp120 A244gD IgG responses in CVM persisted for 12 months post final vaccination. Further studies in localization, persistence and magnitude of envelope specific antibodies (IgG and dimeric IgA) in anogenital secretions will help determine their role in preventing mucosal HIV acquisition.
Assuntos
Vacinas contra a AIDS/uso terapêutico , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/prevenção & controle , Imunidade nas Mucosas , Imunização Secundária , Adolescente , Adulto , Canal Anal/imunologia , Formação de Anticorpos , Especificidade de Anticorpos , Método Duplo-Cego , Ensaio de Imunoadsorção Enzimática , Feminino , Seguimentos , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1 , Humanos , Imunização , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Masculino , Proteínas Recombinantes/imunologia , Adulto JovemRESUMO
The RV144 prime-boost regimen demonstrated efficacy against HIV acquisition while VAX003 and VAX004 did not. Although these trials differed by risk groups, immunization regimens, and immunogens, antibody responses may have contributed to the differences observed in vaccine efficacy. We assessed HIV-specific IgG, both total and subclass, and IgA binding to HIV envelope (Env): gp120 proteins and Cyclic V2 (CycV2) and CycV3 peptides and gp70 V1 V2 scaffolds in these 3 HIV vaccine trials. After two protein immunizations, IgG responses to 92TH023 gp120 (contained in ALVAC-HIV vaccine) were significantly higher in RV144 but responses to other Env were higher in the VAX trials lacking ALVAC-HIV. IgG responses declined significantly between vaccinations. All trials induced antibodies to gp70 V1 V2 but VAX004 responses to 92TH023 gp70 V1 V2 were weak. All CycV2 responses were undetectable in VAX004 while 92TH023 gp70 V1 V2 was detected in both RV144 and VAX003 but MN CycV2 was detected only in VAX003. Multiple protein vaccinations in VAX trials did not improve magnitude or durability of V1 V2 and CycV2 antibodies. Herpes simplex virus glycoprotein D (gD) peptide at the N terminus of AIDSVAX® B/E and B/B gp120 proteins induced antibodies in all trials, although significantly higher in VAX trials. gD peptide induced IgA, IgG1, IgG2, and IgG3 but not IgG4. Multiple protein vaccinations decreased IgG3 and increased IgG4 changing subclass contribution to total IgG. Although confounded by different modes of HIV transmission, higher Env-specific IgA and IgG4 binding antibodies induced in the VAX trials compared to RV144 raises the hypothesis that these differences may have contributed to different vaccine efficacy results.
Assuntos
Vacinas contra a AIDS/imunologia , Formação de Anticorpos , Anticorpos Anti-HIV/sangue , Infecções por HIV/prevenção & controle , Vacinas contra a AIDS/administração & dosagem , Anticorpos Anti-HIV/imunologia , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Voluntários , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologiaRESUMO
BACKGROUND: The gut mucosal homing integrin receptor α4ß7 present on activated CD4+ T cells interacts with the HIV-1 gp120 second variable loop (V2). Case control analysis of the RV144 phase III vaccine trial demonstrated that plasma IgG binding antibodies specific to scaffolded proteins expressing the first and second variable regions (V1V2) of HIV envelope protein gp120 containing the α4ß7 binding motif correlated inversely with risk of infection. Subsequently antibodies to the V3 region were also shown to correlate with protection. The integrin receptor α4ß7 was shown to interact with the LDI/V motif on V2 loop but recent studies suggest that additional regions of V2 loop could interact with the α4ß7. Thus, there may be several regions on the V2 and possibly V3 loops that may be involved in this binding. Using a cell line, that constitutively expressed α4ß7 receptors but lacked CD4, we examined the contribution of V2 and V3 loops and the ability of V2 peptide-, V2 integrin-, V3-specific monoclonal antibodies (mAbs), and purified IgG from RV144 vaccinees to block the V2/V3-α4ß7 interaction. RESULTS: We demonstrate that α4ß7 on RPMI8866 cells bound specifically to its natural ligand mucosal addressin cell adhesion molecule-1 (MAdCAM-1) as well as to cyclic-V2 and cyclic-V3 peptides. This binding was inhibited by anti-α4ß7-specific monoclonal antibody (mAb) ACT-1, mAbs specific to either V2 or V3 loops, and by purified primary virions or infectious molecular clones expressing envelopes from acute or chronic subtypes A, C, and CRF01_AE viruses. Plasma from HIV-1 infected Thai individuals as well as purified IgG from uninfected RV144 vaccinees inhibited (0-50%) the binding of V2 and V3 peptides to α4ß7. CONCLUSION: Our results indicate that in addition to the tripeptide LDI/V motif, other regions of the V2 and V3 loops of gp120 were involved in binding to α4ß7 receptors and this interaction was blocked by anti-V2 peptide, anti-V2 integrin, and anti-V3 antibodies. The ability of purified IgG from some of the uninfected RV144 vaccinees to inhibit α4ß7 raises the hypothesis that anti-V2 and anti-V3 antibodies may play a role in blocking the gp120-α4ß7 interaction after vaccination and thus prevent HIV-1 acquisition.
Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/metabolismo , Integrinas/metabolismo , Ligação Proteica/imunologia , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , HIV-1/metabolismo , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Integrinas/imunologia , Dados de Sequência Molecular , Testes de Neutralização/métodosRESUMO
We performed fine epitope mapping of the CD4+ responses in the ALVAC-HIV-AIDSVAX B/E prime-boost regimen in the Thai Phase III trial (RV144). Non-transformed Env-specific T cell lines established from RV144 vaccinees were used to determine the fine epitope mapping of the V2 and C1 responses and the HLA class II restriction. Data showed that there are two CD4+ epitopes contained within the V2 loop: one encompassing the α4ß7 integrin binding site (AA179-181) and the other nested between two previously described genetic sieve signatures (AA169, AA181). There was no correlation between the frequencies of CD4+ fine epitope responses and binding antibody.
Assuntos
Vacinas contra a AIDS/imunologia , Sítios de Ligação de Anticorpos/imunologia , Linfócitos T CD4-Positivos/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Epitopos Imunodominantes/imunologia , Adolescente , Adulto , Linhagem Celular , Mapeamento de Epitopos , Feminino , Humanos , Masculino , Adulto JovemRESUMO
Advances in flow cytometry and other single-cell technologies have enabled high-dimensional, high-throughput measurements of individual cells as well as the interrogation of cell population heterogeneity. However, in many instances, computational tools to analyze the wealth of data generated by these technologies are lacking. Here, we present a computational framework for unbiased combinatorial polyfunctionality analysis of antigen-specific T-cell subsets (COMPASS). COMPASS uses a Bayesian hierarchical framework to model all observed cell subsets and select those most likely to have antigen-specific responses. Cell-subset responses are quantified by posterior probabilities, and human subject-level responses are quantified by two summary statistics that describe the quality of an individual's polyfunctional response and can be correlated directly with clinical outcome. Using three clinical data sets of cytokine production, we demonstrate how COMPASS improves characterization of antigen-specific T cells and reveals cellular 'correlates of protection/immunity' in the RV144 HIV vaccine efficacy trial that are missed by other methods. COMPASS is available as open-source software.
Assuntos
Vacinas contra a AIDS/administração & dosagem , Citocinas/imunologia , Infecções por HIV/tratamento farmacológico , Imunidade Celular , Subpopulações de Linfócitos T/imunologia , Vacinas contra a AIDS/imunologia , Estudos de Casos e Controles , Citocinas/biossíntese , Citocinas/sangue , Feminino , Citometria de Fluxo , Produtos do Gene env/imunologia , Produtos do Gene env/uso terapêutico , Infecções por HIV/sangue , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/patogenicidade , Voluntários Saudáveis , Humanos , Imunoglobulina A/sangue , Masculino , Análise de Célula Única , Resultado do TratamentoRESUMO
RV144 correlates of risk analysis showed that IgG antibodies to gp70V1V2 scaffolds inversely correlated with risk of HIV acquisition. We investigated IgG antibody responses in RV135 and RV132, two ALVAC-HIV prime-boost vaccine trials conducted in Thailand prior to RV144. Both trials used ALVAC-HIV (vCP1521) at 0, 1, 3, and 6 months and HIV-1 gp120MNgD and gp120A244gD in alum (RV135) or gp120SF2 and gp120CM235 in MF59 (RV132) at 3 and 6 months. We assessed ELISA binding antibodies to the envelope proteins (Env) 92TH023, A244gD and MNgD, cyclicV2, and gp70V1V2 CaseA2 (subtype B) and 92TH023 (subtype CRF01_AE), and Env-specific IgG1 and IgG3. Antibody responses to gp120 A244gD, MNgD, and gp70V1V2 92TH023 scaffold were significantly higher in RV135 than in RV132. Antibodies to gp70V1V2 CaseA2 were detected only in RV135 vaccine recipients and IgG1 and IgG3 antibody responses to A244gD were significantly higher in RV135. IgG binding to gp70V1V2 CaseA2 and CRF01_AE scaffolds was higher with the AIDSVAX(®)B/E boost but both trials showed similar rates of antibody decline post-vaccination. MF59 did not result in higher IgG antibody responses compared to alum with the antigens tested. However, notable differences in the structure of the recombinant proteins and dosage used for immunizations may have contributed to the magnitude and specificity of IgG induced by the two trials.