Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 34(12): 16432-16448, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33095949

RESUMO

Infections of the lung are among the leading causes of death worldwide. Despite the preactivation of innate defense programs during viral infection, secondary bacterial infection substantially elevates morbidity and mortality rates. Particularly problematic are co-infections with influenza A virus (IAV) and the major bacterial pathogen Streptococcus pneumoniae. However, the molecular processes underlying the severe course of such co-infections are not fully understood. Previously, the absence of secreted glycoprotein Chitinase-3-like 1 (CHI3L1) was shown to increase pneumococcal replication in mice. We therefore hypothesized that an IAV preinfection decreases CHI3L1 levels to promote pneumococcal infection. Indeed, in an air-liquid interface model of primary human bronchial epithelial cells (hBECs), IAV preinfection interfered with apical but not basolateral CHI3L1 release. Confocal time-lapse microscopy revealed that the gradual loss of apical CHI3L1 localization during co-infection with influenza and S. pneumoniae coincided with the disappearance of goblet as well as ciliated cells and increased S. pneumoniae replication. Importantly, extracellular restoration of CHI3L1 levels using recombinant protein significantly reduced bacterial load in influenza preinfected bronchial models. Thus, recombinant CHI3L1 may provide a novel therapeutic means to lower morbidity and mortality associated with post-influenza pneumococcal infections.


Assuntos
Brônquios/metabolismo , Proteína 1 Semelhante à Quitinase-3/metabolismo , Coinfecção/microbiologia , Coinfecção/virologia , Vírus da Influenza A/patogenicidade , Infecções Pneumocócicas/metabolismo , Pneumonia Pneumocócica/metabolismo , Brônquios/microbiologia , Brônquios/virologia , Linhagem Celular , Coinfecção/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Humanos , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/virologia , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/virologia , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/virologia , Streptococcus pneumoniae/patogenicidade
2.
ALTEX ; 40(1): 83-102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35791291

RESUMO

Endocrine disruption by environmental chemicals continues to be a concern for human safety. The rat, a widely used model organism in toxicology, is very sensitive to chemical-induced thyroid perturbation, e.g., histopathological alterations in thyroid tissue. Species differences in the susceptibility to thyroid perturbation lead to uncertainty in human safety risk assessments. Hazard identification and characterization of chemically induced thyroid perturbation would therefore benefit from in vitro models addressing different mechanisms of action in a single functional assay, ideally across species. We here introduce a rat thyroid-liver chip that enables simultaneous identification of direct and indirect (liver-mediated) thyroid perturbation on organ-level functions in vitro. A second manuscript describes our work toward a human thyroid-liver chip (Kühnlenz et al., 2022). The presented microfluidic model consisting of primary rat thyroid follicles and liver 3D spheroids maintains a tissue-specific phenotype for up to 21 days. More precisely, the thyroid model exhibits a follicular architecture expressing basolateral and apical markers and secretes T4. Likewise, liver spheroids retain hepatocellular characteristics, e.g., a stable release of albumin and urea, the presence of bile canalicular networks, and the formation of T4-glucuronide. Experiments with reference chemicals demonstrated proficiency to detect direct and indirect mechanisms of thyroid perturbation through decreased thyroid hormone secretion and increased gT4 formation, respectively. Prospectively this rat thyroid-liver chip model, together with its human counterpart, may support a species-specific quantitative in vitro to in vivo extrapolation to improve a data-driven and evidence-based human safety risk assessment with significant contributions to the 3R principles.


Assuntos
Roedores , Glândula Tireoide , Humanos , Ratos , Animais , Alternativas aos Testes com Animais , Fígado
3.
ALTEX ; 40(1): 61-82, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35536601

RESUMO

Thyroid hormones (THs) are crucial regulators of human metabolism and early development. During the safety assessment of plant protection products, the human relevance of chemically induced TH perturbations observed in test animals remains uncertain. European regulatory authorities request follow-up in vitro studies to elucidate human-relevant interferences on thyroid gland function or TH catabolism through hepatic enzyme induction. However, human in vitro assays based on single molecular initiating events poorly reflect the complex TH biology and related liver-thyroid axis. To address this complexity, we present human three-dimensional thyroid and liver organoids with key functions of TH metabolism. The thyroid model resembles in vivo-like follicular architecture and a TSH-dependent triiodothyronine synthesis over 21 days, which is inhibited by methimazole. The HepaRG-based liver model, secreting the critical TH-binding proteins albumin and thyroxine-binding globulin, emulates an active TH catabolism via the formation of glucuronidated and sulfated thyroxine (gT4/sT4). Activation of the nuclear receptors PXR and AHR was demonstrated via the induction of specific CYP isoenzymes by rifampicin, pregnenolone-16α-carbonitrile, and ß-naphthoflavone. However, this nuclear receptor activation, assumed to regulate UDP-glucuronosyltransferases and sulfotransferases, appeared to have no effect on gT4 and sT4 formation in this human-derived hepatic cell line model. Finally, established single-tissue models were successfully co-cultured in a perfused two-organ chip for 21 days. In conclusion, this model presents a first step towards a complex multimodular human platform that will help to identify both direct and indirect thyroid disruptors that are relevant from a human safety perspective.


Assuntos
Segurança Química , Glândula Tireoide , Animais , Humanos , Glândula Tireoide/metabolismo , Microfluídica , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/farmacologia , Fígado , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/farmacologia
4.
Cell Signal ; 67: 109498, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31837465

RESUMO

Lower respiratory tract infections are among the most common causes of death worldwide. Main pathogens leading to these severe infections are viruses and gram-positive bacteria that activate toll-like receptor (TLR)-mediated immune responses via pathogen-associated molecular patterns. One protective factor induced during infection is Chitinase-3-like 1 (CHI3L1), which exerts various functions, e.g. in host cell proliferation and bacterial counteraction, and has been proposed as a biomarker in several acute and chronic inflammatory conditions. MicroRNAs (miR) have become important regulators of inflammation and infection and are considered therapeutic targets in recent years. However, it is not known whether microRNAs play a role in the regulation of CHI3L1 expression in TLR-mediated respiratory epithelial cell inflammation. In this study, we analysed the pre- and post-transcriptional regulation of CHI3L1 by TLRs in bronchial epithelial cells. Therefore, we stimulated BEAS-2B cells with the bacterial TLR2-ligand lipoteichoic acid or the viral dsRNA analogue poly(I:C). We observed an increase in the expression of CHI3L1, which was dependent on TNF-α-mediated NF-κB activation in TLR2- and TLR3-activated cells. Moreover, TLR2 and - 3 stimulation caused downregulation of the microRNA miR-149-5p, an effect that could be suppressed by inhibiting NF-κB translocation into the nucleus. Luciferase reporter assays identified a direct interaction of miR-149-5p with the CHI3L1 3´untranslated region. This interaction was confirmed by inhibition and overexpression of miR-149-5p in BEAS-2B cells, which altered the expression levels of CHI3L1 mRNA. In summary, miR-149-5p directly regulates CHI3L1 in context of TLR-mediated airway epithelial cell inflammation and may be a potential therapeutic target in inflammation and other diseases.


Assuntos
Proteína 1 Semelhante à Quitinase-3/genética , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Pulmão/citologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Bases , Linhagem Celular , Proteína 1 Semelhante à Quitinase-3/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Luciferases/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA