Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 20(1): 226, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930242

RESUMO

BACKGROUND: All living organisms have developed during evolution complex time-keeping biological clocks that allowed them to stay attuned to their environments. Circadian rhythms cycle on a near 24 h clock. These encompass a variety of changes in the body ranging from blood hormone levels to metabolism, to the gut microbiota composition and others. The gut microbiota, in return, influences the host stress response and the physiological changes associated with it, which makes it an important determinant of health. Lactobacilli are traditionally consumed for their prophylactic and therapeutic benefits against various diseases, namely, the inflammatory bowel syndrome, and even emerged recently as promising psychobiotics. However, the potential role of lactobacilli in the normalization of circadian rhythms has not been addressed. RESULTS: Two-month-old male rats were randomly divided into three groups and housed under three different light/dark cycles for three months: natural light, constant light and constant darkness. The strain Levilactobacillus brevis 47f was administered to rats at a dose of 0.5 ml per rat for one month and The rats were observed for the following two months. As a result, we identified the biomarkers associated with intake of L. brevis 47f. Changing the light regime for three months depleted the reserves of the main buffer in the cell-reduced glutathione. Intake of L. brevis 47f for 30 days restored cellular reserves of reduced glutathione and promoted redox balance. Our results indicate that the levels of urinary catecholamines correlated with light/dark cycles and were influenced by intake of L. brevis 47f. The gut microbiota of rats was also influenced by these factors. L. brevis 47f intake was associated with an increase in the relative abundance of Faecalibacterium and Roseburia and a decrease in the relative abundance of Prevotella and Bacteroides. CONCLUSIONS: The results of this study show that oral administration of L. brevis 47f, for one month, to rats housed under abnormal lightning conditions (constant light or constant darkness) normalized their physiological parameters and promoted the gut microbiome's balance.


Assuntos
Ritmo Circadiano/fisiologia , Escuridão , Microbioma Gastrointestinal/fisiologia , Levilactobacillus brevis/fisiologia , Luz , Animais , Microbioma Gastrointestinal/genética , Masculino , Probióticos/administração & dosagem , Ratos
2.
BMC Microbiol ; 19(1): 160, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31299889

RESUMO

BACKGROUND: All living organisms experience physiological changes regulated by endogenous circadian rhythms. The main factor controlling the circadian clock is the duration of daylight. The aim of this research was to identify the impact of various lighting conditions on physiological parameters and gut microbiota composition in rats. 3 groups of outbred rats were subjected to normal light-dark cycles, darkness and constant lighting. RESULTS: After 1 and 3 months we studied urinary catecholamine levels in rats; indicators of lipid peroxidation and antioxidant activity in the blood; protein levels of BMAL1, CLOCK and THRA in the hypothalamus; composition and functional activity of the gut microbiota. Subjecting the rats to conditions promoting desynchronosis for 3 months caused disruptions in homeostasis. CONCLUSIONS: Changing the lighting conditions led to changes in almost all the physiological parameters that we studied. Catecholamines can be regarded as a synchronization super system of split-level circadian oscillators. We established a correlation between hypothalamic levels of Bmal1 and urinary catecholamine concentrations. The magnitude of changes in the GM taxonomic composition was different for LL/LD and DD/LD but the direction of these changes was similar. As for the predicted functional properties of the GM which characterize its metabolic activity, they didn't change as dramatically as the taxonomic composition. All differences may be viewed as a compensatory reaction to new environmental conditions and the organism has adapted to those conditions.


Assuntos
Catecolaminas/urina , Relógios Circadianos/fisiologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano/fisiologia , Microbioma Gastrointestinal/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Escuridão , Luz , Masculino , Ratos
3.
Biol Trace Elem Res ; 185(2): 384-394, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29441448

RESUMO

Although aluminum chronic neurotoxicity is well documented, there are no well-established experimental protocols of Al exposure. In the current study, toxic effects of sub-chronic Al exposure have been evaluated in outbreed male rats (gastrointestinal administration). Forty animals were used: 10 were administered with AlCl3 water solution (2 mg/kg Al per day) for 1 month, 10 received the same concentration of AlCl3 for 3 month, and 20 (10 per observation period) saline as control. After 30 and 90 days, the animals underwent behavioral tests: open field, passive avoidance, extrapolation escape task, and grip strength. At the end of the study, the blood, liver, kidney, and brain were excised for analytical and morphological studies. The Al content was measured by inductively coupled plasma mass-spectrometry. Essential trace elements-Co, Cr, Cu, Fe, Mg, Mn, Mo, Se, and Zn-were measured in whole blood samples. Although no morphological changes were observed in the brain, liver, or kidney for both exposure terms, dose-dependent Al accumulation and behavioral differences (increased locomotor activity after 30 days) between treatment and control groups were indicated. Moreover, for 30 days exposure, strong positive correlation between Al content in the brain and blood for individual animals was established, which surprisingly disappeared by the third month. This may indicate neural barrier adaptation to the Al exposure or the saturation of Al transport into the brain. Notably, we could not see a clear neurodegeneration process after rather prolonged sub-chronic Al exposure, so probably longer exposure periods are required.


Assuntos
Cloreto de Alumínio/administração & dosagem , Cloreto de Alumínio/toxicidade , Sistema Nervoso Central/efeitos dos fármacos , Modelos Animais de Doenças , Administração Oral , Cloreto de Alumínio/farmacocinética , Animais , Comportamento Animal/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Masculino , Ratos , Ratos Wistar , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA