Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 45(1): 185-97, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27438771

RESUMO

Group 3 innate lymphoid cells (ILC3s) expressing the transcription factor (TF) RORγt are important for the defense and homeostasis of host intestinal tissues. The zinc finger TF Ikaros, encoded by Ikzf1, is essential for the development of RORγt(+) fetal lymphoid tissue inducer (LTi) cells and lymphoid organogenesis, but its role in postnatal ILC3s is unknown. Here, we show that small-intestinal ILC3s had lower Ikaros expression than ILC precursors and other ILC subsets. Ikaros inhibited ILC3s in a cell-intrinsic manner through zinc-finger-dependent inhibition of transcriptional activity of the aryl hydrocarbon receptor, a key regulator of ILC3 maintenance and function. Ablation of Ikzf1 in RORγt(+) ILC3s resulted in increased expansion and cytokine production of intestinal ILC3s and protection against infection and colitis. Therefore, in contrast to being required for LTi development, Ikaros inhibits postnatal ILC3 development and function to regulate gut immune responses at steady state and in disease.


Assuntos
Colite/imunologia , Fator de Transcrição Ikaros/metabolismo , Mucosa Intestinal/imunologia , Linfócitos/fisiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Colite/induzido quimicamente , Sulfato de Dextrana , Homeostase , Fator de Transcrição Ikaros/genética , Imunidade Inata , Mucosa Intestinal/microbiologia , Ativação Linfocitária , Linfócitos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais , Ativação Transcricional
2.
Biochem Biophys Res Commun ; 694: 149399, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38134477

RESUMO

Ikaros family proteins (Ikaros, Helios, Aiolos, Eos) are zinc finger transcription factors essential for the development and function of the adaptive immune system. They also control developmental events in neurons and other cell types, suggesting that they possess crucial functions across disparate cell types. These functions are likely shared among the organisms in which these factors exist, and it is thus important to obtain a view of their distribution and conservation across organisms. How this family evolved remains poorly understood. Here we mined protein, mRNA and DNA databases to identify proteins with DNA-binding domains homologous to that of Ikaros. We show that Ikaros-related proteins exist in organisms from all four deuterostome phyla (chordates, echinoderms, hemichordates, xenacoelomorpha), but not in more distant groups. While most non-vertebrates have a single family member, this family grew to six members in the acoel worm Hofstenia miamia, three in jawless and four in jawed vertebrates. Most residues involved in DNA contact from zinc fingers 2 to 4 were identical across the Ikaros family, suggesting conserved mechanisms for target sequence recognition. Further, we identified a novel KRKxxxPxK/R motif that inhibits DNA binding in vitro which was conserved across the deuterostome phyla. We also identified a EψψxxxψM(D/E)QAIxxAIxYLGA(D/E)xL motif conserved among human Ikaros, Aiolos, Helios and subsets of chordate proteins, and motifs that are specific to subsets of vertebrate family members. Some of these motifs are targets of mutations in human patients. Finally we show that the atypical family member Pegasus emerged only in vertebrates, which is consistent with its function in bone. Our data provide a novel evolutionary perspective for Ikaros family proteins and suggest that they have conserved regulatory functions across deuterostomes.


Assuntos
Fator de Transcrição Ikaros , Dedos de Zinco , Animais , Humanos , DNA , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , RNA Mensageiro , Dedos de Zinco/genética
3.
Nat Immunol ; 13(10): 972-80, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22961053

RESUMO

The transcription factor Foxp3 participates dominantly in the specification and function of Foxp3(+)CD4(+) regulatory T cells (T(reg) cells) but is neither strictly necessary nor sufficient to determine the characteristic T(reg) cell signature. Here we used computational network inference and experimental testing to assess the contribution of other transcription factors to this. Enforced expression of Helios or Xbp1 elicited distinct signatures, but Eos, IRF4, Satb1, Lef1 and GATA-1 elicited exactly the same outcome, acting in synergy with Foxp3 to activate expression of most of the T(reg) cell signature, including key transcription factors, and enhancing occupancy by Foxp3 at its genomic targets. Conversely, the T(reg) cell signature was robust after inactivation of any single cofactor. A redundant genetic switch thus 'locked in' the T(reg) cell phenotype, a model that would account for several aspects of T(reg) cell physiology, differentiation and stability.


Assuntos
Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Antígenos CD4/biossíntese , Diferenciação Celular , Biologia Computacional , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Fatores de Transcrição Forkhead/genética , Fator de Transcrição GATA1/genética , Humanos , Fator de Transcrição Ikaros/biossíntese , Fator de Transcrição Ikaros/genética , Fatores Reguladores de Interferon/genética , Ativação Linfocitária , Fator 1 de Ligação ao Facilitador Linfoide/genética , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição de Fator Regulador X , Serina Endopeptidases/genética , Linfócitos T Reguladores/citologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Proteína 1 de Ligação a X-Box
4.
Cell ; 138(2): 300-13, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19632180

RESUMO

While hematopoietic stem cell (HSC) self-renewal is well studied, it remains unknown whether distinct control mechanisms enable HSC divisions that generate progeny cells with specific lineage bias. Here, we report that the monocytic transcription factor MafB specifically restricts the ability of M-CSF to instruct myeloid commitment divisions in HSCs. MafB deficiency specifically enhanced sensitivity to M-CSF and caused activation of the myeloid master-regulator PU.1 in HSCs in vivo. Single-cell analysis revealed that reduced MafB levels enabled M-CSF to instruct divisions producing asymmetric daughter pairs with one PU.1(+) cell. As a consequence, MafB(-/-) HSCs showed a PU.1 and M-CSF receptor-dependent competitive repopulation advantage specifically in the myelomonocytic, but not T lymphoid or erythroid, compartment. Lineage-biased repopulation advantage was progressive, maintained long term, and serially transplantable. Together, this indicates that an integrated transcription factor/cytokine circuit can control the rate of specific HSC commitment divisions without compromising other lineages or self-renewal.


Assuntos
Linhagem da Célula , Células-Tronco Hematopoéticas/citologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator de Transcrição MafB/metabolismo , Células Mieloides/citologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transativadores/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33893236

RESUMO

The production of proinflammatory cytokines, particularly granulocyte-macrophage colony-stimulating factor (GM-CSF), by pathogenic CD4+ T cells is central for mediating tissue injury in inflammatory and autoimmune diseases. However, the factors regulating the T cell pathogenic gene expression program remain unclear. Here, we investigated how the Ikaros transcription factor regulates the global gene expression and chromatin accessibility changes in murine T cells during Th17 polarization and after activation via the T cell receptor (TCR) and CD28. We found that, in both conditions, Ikaros represses the expression of genes from the pathogenic signature, particularly Csf2, which encodes GM-CSF. We show that, in TCR/CD28-activated T cells, Ikaros binds a critical enhancer downstream of Csf2 and is required to regulate chromatin accessibility at multiple regions across this locus. Genome-wide Ikaros binding is associated with more compact chromatin, notably at multiple sites containing NFκB or STAT5 target motifs, and STAT5 or NFκB inhibition prevents GM-CSF production in Ikaros-deficient cells. Importantly, Ikaros also limits GM-CSF production in TCR/CD28-activated human T cells. Our data therefore highlight a critical conserved transcriptional mechanism that antagonizes GM-CSF expression in T cells.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator de Transcrição Ikaros/metabolismo , Ativação Linfocitária , Diferenciação Celular , Células Cultivadas , Epigenoma , Regulação da Expressão Gênica , Humanos
6.
Biochem Biophys Res Commun ; 674: 83-89, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37413709

RESUMO

The transcriptional regulators that drive regulatory T (Treg) cell development and function remain partially understood. Helios (Ikzf2) and Eos (Ikzf4) are closely-related members of the Ikaros family of transcription factors. They are highly expressed in CD4+ Treg cells and functionally important for Treg cell biology, as mice deficient for either Helios or Eos are susceptible to autoimmune diseases. However, it remains unknown if these factors exhibit specific or partially redundant functions in Treg cells. Here we show that mice with germline deletions of both Ikzf2 and Ikzf4 are not very different from animals with single Ikzf2 or Ikzf4 deletions. Double knockout Treg cells differentiate normally, and efficiently suppress effector T cell proliferation in vitro. Both Helios and Eos are required for optimal Foxp3 protein expression. Surprisingly, Helios and Eos regulate different, largely non-overlapping, sets of genes. Only Helios is required for proper Treg cell aging, as Helios deficiency results in reduced Treg cell frequencies in the spleen of older animals. These results indicate that Helios and Eos are required for distinct aspects of Treg cell function.


Assuntos
Fator de Transcrição Ikaros , Linfócitos T Reguladores , Animais , Camundongos , Doenças Autoimunes/genética , Suscetibilidade a Doenças/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Fatores de Transcrição/metabolismo
7.
PLoS Genet ; 14(7): e1007485, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30001316

RESUMO

Plasmacytoid and conventional dendritic cells (pDCs and cDCs) arise from monocyte and dendritic progenitors (MDPs) and common dendritic progenitors (CDPs) through gene expression changes that remain partially understood. Here we show that the Ikaros transcription factor is required for DC development at multiple stages. Ikaros cooperates with Notch pathway activation to maintain the homeostasis of MDPs and CDPs. Ikaros then antagonizes TGFß function to promote pDC differentiation from CDPs. Strikingly, Ikaros-deficient CDPs and pDCs express a cDC-like transcriptional signature that is correlated with TGFß activation, suggesting that Ikaros is an upstream negative regulator of the TGFß pathway and a repressor of cDC-lineage genes in pDCs. Almost all of these phenotypes can be rescued by short-term in vitro treatment with γ-secretase inhibitors, which affects both TGFß-dependent and -independent pathways, but is Notch-independent. We conclude that Ikaros is a crucial differentiation factor in early dendritic progenitors that is required for pDC identity.


Assuntos
Diferenciação Celular/genética , Células Dendríticas/fisiologia , Fator de Transcrição Ikaros/metabolismo , Receptores Notch/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Transplante de Medula Óssea , Linhagem Celular , Regulação para Baixo , Células-Tronco Hematopoéticas/fisiologia , Fator de Transcrição Ikaros/genética , Camundongos , Camundongos Transgênicos , Monócitos/fisiologia , Mutação , Transdução de Sinais/genética , Regulação para Cima
8.
Development ; 144(8): 1566-1577, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28289129

RESUMO

Here, we unravel the mechanism of action of the Ikaros family zinc finger protein Helios (He) during the development of striatal medium spiny neurons (MSNs). He regulates the second wave of striatal neurogenesis involved in the generation of striatopallidal neurons, which express dopamine 2 receptor and enkephalin. To exert this effect, He is expressed in neural progenitor cells (NPCs) keeping them in the G1/G0 phase of the cell cycle. Thus, a lack of He results in an increase of S-phase entry and S-phase length of NPCs, which in turn impairs striatal neurogenesis and produces an accumulation of the number of cycling NPCs in the germinal zone (GZ), which end up dying at postnatal stages. Therefore, He-/- mice show a reduction in the number of dorso-medial striatal MSNs in the adult that produces deficits in motor skills acquisition. In addition, overexpression of He in NPCs induces misexpression of DARPP-32 when transplanted in mouse striatum. These findings demonstrate that He is involved in the correct development of a subset of striatopallidal MSNs and reveal new cellular mechanisms for neuronal development.


Assuntos
Corpo Estriado/citologia , Proteínas de Ligação a DNA/metabolismo , Globo Pálido/citologia , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Contagem de Células , Pontos de Checagem do Ciclo Celular , Morte Celular , Proliferação de Células , Ciclina E/metabolismo , Fase G1 , Camundongos Knockout , Atividade Motora , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Fenótipo , Fase S
9.
J Biol Chem ; 291(17): 9073-86, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26841869

RESUMO

B1 B cells secrete most of the circulating natural antibodies and are considered key effector cells of the innate immune response. However, B1 cell-associated antibodies often cross-react with self-antigens, which leads to autoimmunity, and B1 cells have been implicated in cancer. How B1 cell activity is regulated remains unclear. We show that the Ikaros transcription factor is a major negative regulator of B1 cell development and function. Using conditional knock-out mouse models to delete Ikaros at different locations, we show that Ikaros-deficient mice exhibit specific and significant increases in splenic and bone marrow B1 cell numbers, and that the B1 progenitor cell pool is increased ∼10-fold in the bone marrow. Ikaros-null B1 cells resemble WT B1 cells at the molecular and cellular levels, but show a down-regulation of signaling components important for inhibiting proliferation and immunoglobulin production. Ikaros-null B1 cells hyper-react to TLR4 stimulation and secrete high amounts of IgM autoantibodies. These results indicate that Ikaros is required to limit B1 cell homeostasis in the adult.


Assuntos
Autoanticorpos/imunologia , Subpopulações de Linfócitos B/imunologia , Células da Medula Óssea/imunologia , Fator de Transcrição Ikaros/imunologia , Imunoglobulina M/imunologia , Células Precursoras de Linfócitos B/imunologia , Animais , Fator de Transcrição Ikaros/genética , Camundongos , Camundongos Knockout , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia
11.
BMC Bioinformatics ; 17(1): 462, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27846811

RESUMO

We published a new method (BMC Bioinformatics 2014, 15:14) for searching for differentially expressed genes from two biological conditions datasets. The presentation of theorem 1 in this paper was incomplete. We received an anonymous comment about our publication that motivates the present work. Here, we present a complementary result which is necessary from the theoretical point of view to demonstrate our theorem. We also show that this result has no negative impact on our conclusions obtained with synthetic and experimental microarrays datasets.


Assuntos
Algoritmos , Biologia Computacional/métodos , Interpretação Estatística de Dados , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Simulação por Computador , Bases de Dados Genéticas , Humanos
12.
Biochem Biophys Res Commun ; 470(3): 714-720, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26775846

RESUMO

The Ikaros transcription factor is essential for early B cell development, but its effect on mature B cells is debated. We show that Ikaros is required to limit the response of naive splenic B cells to B cell receptor signals. Ikaros deficient follicular B cells grow larger and enter cell cycle faster after anti-IgM stimulation. Unstimulated mutant B cells show deregulation of positive and negative regulators of signal transduction at the mRNA level, and constitutive phosphorylation of ERK, p38, SYK, BTK, AKT and LYN. Stimulation results in enhanced and prolonged ERK and p38 phosphorylation, followed by hyper-proliferation. Pharmacological inhibition of ERK and p38 abrogates the increased proliferative response of Ikaros deficient cells. These results suggest that Ikaros functions as a negative regulator of follicular B cell activation.


Assuntos
Fator de Transcrição Ikaros/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/fisiologia , Baço/citologia , Animais , Linfócitos B , Proliferação de Células/fisiologia , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
13.
Blood ; 122(5): 694-704, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23801632

RESUMO

Wnt signaling is important for T-cell differentiation at the early CD4(-)CD8(-) stage and is subsequently downregulated with maturation. To assess the importance of this downregulation, we generated a mouse line (R26-ßcat) in which high levels of active ß-catenin are maintained throughout T-cell development. Young R26-ßcat mice show a differentiation block at the CD4(+)CD8(+) double-positive (DP) stage. These DP cells exhibit impaired apoptosis upon irradiation or dexamethasone treatment. All R26-ßcat mice develop T-cell leukemias at 5 to 6 months of age. R26-ßcat leukemias remain dependent on ß-catenin function but lack Notch pathway activation. They exhibit recurrent secondary genomic rearrangements that lead to Myc overexpression and loss of Pten activity. Because ß-catenin activation and Myc translocations were previously found in murine T-cell acute lymphoblastic leukemias (T-ALLs) deficient for Pten, our results suggest that activation of the canonical Wnt pathway is associated with a subtype of Notch-independent T-ALLs that bear Myc gene rearrangements and Pten mutations.


Assuntos
Genes myc/genética , PTEN Fosfo-Hidrolase/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptores Notch/fisiologia , beta Catenina/fisiologia , Animais , Diferenciação Celular/genética , Deleção de Genes , Regulação Leucêmica da Expressão Gênica , Camundongos , Camundongos Transgênicos , Mutação/fisiologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/mortalidade , Receptores Notch/genética , Linfócitos T/metabolismo , Linfócitos T/fisiologia , Regulação para Cima/genética , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , beta Catenina/agonistas , beta Catenina/genética , beta Catenina/metabolismo
14.
BMC Bioinformatics ; 15: 14, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24423217

RESUMO

BACKGROUND: Different methods have been proposed for analyzing differentially expressed (DE) genes in microarray data. Methods based on statistical tests that incorporate expression level variability are used more commonly than those based on fold change (FC). However, FC based results are more reproducible and biologically relevant. RESULTS: We propose a new method based on fold change rank ordering statistics (FCROS). We exploit the variation in calculated FC levels using combinatorial pairs of biological conditions in the datasets. A statistic is associated with the ranks of the FC values for each gene, and the resulting probability is used to identify the DE genes within an error level. The FCROS method is deterministic, requires a low computational runtime and also solves the problem of multiple tests which usually arises with microarray datasets. CONCLUSION: We compared the performance of FCROS with those of other methods using synthetic and real microarray datasets. We found that FCROS is well suited for DE gene identification from noisy datasets when compared with existing FC based methods.


Assuntos
Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Algoritmos , Simulação por Computador , Bases de Dados Genéticas
16.
Blood ; 120(1): 90-9, 2012 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-22611152

RESUMO

The physiologic role played by plasmacytoid dendritic cells (pDCs) in the induction of innate responses and inflammation in response to pathogen signaling is not well understood. Here, we describe a new mouse model lacking pDCs and establish that pDCs are essential for the in vivo induction of NK-cell activity in response to Toll-like receptor 9 (TLR9) triggering. Furthermore, we provide the first evidence that pDCs are critical for the systemic production of a wide variety of chemokines in response to TLR9 activation. Consequently, we observed a profound alteration in monocyte, macrophage, neutrophil, and NK-cell recruitment at the site of inflammation in the absence of pDCs in response to CpG-Dotap and stimulation by microbial pathogens, such as Leishmania major, Escherichia coli, and Mycobacterium bovis. This study, which is based on the development of a constitutively pDC-deficient mouse model, highlights the pivotal role played by pDCs in the induction of innate immune responses and inflammation after TLR9 triggering.


Assuntos
Células Dendríticas/imunologia , Infecções/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/microbiologia , Receptor Toll-Like 9/imunologia , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Movimento Celular/imunologia , Quimiocinas/imunologia , Citocinas/imunologia , Proteínas de Ligação a DNA/genética , Células Dendríticas/citologia , Infecções por Escherichia coli/imunologia , Imunidade Inata/imunologia , Leishmania major/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Monócitos/citologia , Monócitos/imunologia , Neutrófilos/citologia , Neutrófilos/imunologia , Transdução de Sinais/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Receptor Toll-Like 9/metabolismo , Tuberculose/imunologia
17.
Sci Immunol ; 8(88): eabq3109, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889983

RESUMO

Mutations in the gene encoding the zinc-finger transcription factor Ikaros (IKZF1) are found in patients with immunodeficiency, leukemia, and autoimmunity. Although Ikaros has a well-established function in modulating gene expression programs important for hematopoietic development, its role in other cell types is less well defined. Here, we uncover functions for Ikaros in thymic epithelial lineage development in mice and show that Ikzf1 expression in medullary thymic epithelial cells (mTECs) is required for both autoimmune regulator-positive (Aire+) mTEC development and tissue-specific antigen (TSA) gene expression. Accordingly, TEC-specific deletion of Ikzf1 in mice results in a profound decrease in Aire+ mTECs, a global loss of TSA gene expression, and the development of autoimmunity. Moreover, Ikaros shapes thymic mimetic cell diversity, and its deletion results in a marked expansion of thymic tuft cells and muscle-like mTECs and a loss of other Aire-dependent mimetic populations. Single-cell analysis reveals that Ikaros modulates core transcriptional programs in TECs that correlate with the observed cellular changes. Our findings highlight a previously undescribed role for Ikaros in regulating epithelial lineage development and function and suggest that failed thymic central tolerance could contribute to the autoimmunity seen in humans with IKZF1 mutations.


Assuntos
Tolerância Central , Timo , Humanos , Camundongos , Animais , Diferenciação Celular , Fatores de Transcrição , Regulação da Expressão Gênica
18.
Blood ; 116(25): 5443-54, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-20829372

RESUMO

The Notch pathway is frequently activated in T-cell acute lymphoblastic leukemias (T-ALLs). Of the Notch receptors, Notch1 is a recurrent target of gain-of-function mutations and Notch3 is expressed in all T-ALLs, but it is currently unclear how these receptors contribute to T-cell transformation in vivo. We investigated the role of Notch1 and Notch3 in T-ALL progression by a genetic approach, in mice bearing a knockdown mutation in the Ikaros gene that spontaneously develop Notch-dependent T-ALL. While deletion of Notch3 has little effect, T cell-specific deletion of floxed Notch1 promoter/exon 1 sequences significantly accelerates leukemogenesis. Notch1-deleted tumors lack surface Notch1 but express γ-secretase-cleaved intracellular Notch1 proteins. In addition, these tumors accumulate high levels of truncated Notch1 transcripts that are caused by aberrant transcription from cryptic initiation sites in the 3' part of the gene. Deletion of the floxed sequences directly reprograms the Notch1 locus to begin transcription from these 3' promoters and is accompanied by an epigenetic reorganization of the Notch1 locus that is consistent with transcriptional activation. Further, spontaneous deletion of 5' Notch1 sequences occurs in approximately 75% of Ikaros-deficient T-ALLs. These results reveal a novel mechanism for the oncogenic activation of the Notch1 gene after deletion of its main promoter.


Assuntos
Fator de Transcrição Ikaros/fisiologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Regiões Promotoras Genéticas/genética , Receptor Notch1/genética , Ativação Transcricional/fisiologia , Animais , Northern Blotting , Western Blotting , Transformação Celular Neoplásica , Primers do DNA/química , Primers do DNA/genética , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/fisiologia , Camundongos , Camundongos Knockout , Mutação/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , RNA Mensageiro/genética , Receptor Notch3 , Receptores Notch/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência , Taxa de Sobrevida
19.
Blood ; 116(25): 5455-64, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-20852131

RESUMO

Point mutations that trigger ligand-independent proteolysis of the Notch1 ectodomain occur frequently in human T-cell acute lymphoblastic leukemia (T-ALL) but are rare in murine T-ALL, suggesting that other mechanisms account for Notch1 activation in murine tumors. Here we show that most murine T-ALLs harbor Notch1 deletions that fall into 2 types, both leading to ligand-independent Notch1 activation. Type 1 deletions remove exon 1 and the proximal promoter, appear to be RAG-mediated, and are associated with mRNA transcripts that initiate from 3' regions of Notch1. In line with the RAG dependency of these rearrangements, RAG2 binds to the 5' end of Notch1 in normal thymocytes near the deletion breakpoints. Type 2 deletions remove sequences between exon 1 and exons 26 to 28 of Notch1, appear to be RAG-independent, and are associated with transcripts in which exon 1 is spliced out of frame to 3' Notch1 exons. Translation of both types of transcripts initiates at a conserved methionine residue, M1727, which lies within the Notch1 transmembrane domain. Polypeptides initiating at M1727 insert into membranes and are subject to constitutive cleavage by γ-secretase. Thus, like human T-ALL, murine T-ALL is often associated with acquired mutations that cause ligand-independent Notch1 activation.


Assuntos
Proteínas de Homeodomínio/fisiologia , Iniciação Traducional da Cadeia Peptídica/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Regiões Promotoras Genéticas/genética , Receptor Notch1/genética , Ativação Transcricional/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Northern Blotting , Southern Blotting , Western Blotting , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Fator de Transcrição Ikaros/fisiologia , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Mutação/genética , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência , Homologia de Sequência do Ácido Nucleico , Células Tumorais Cultivadas
20.
Eur J Immunol ; 40(8): 2143-54, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20544728

RESUMO

Bcl11b is a transcription factor that, within the hematopoietic system, is expressed specifically in T cells. Although Bcl11b is required for T-cell differentiation in newborn Bcl11b-null mice, and for positive selection in the adult thymus of mice bearing a T-cell-targeted deletion, the gene network regulated by Bcl11b in T cells is unclear. We report herein that Bcl11b is a bifunctional transcriptional regulator, which is required for the correct expression of approximately 1000 genes in CD4(+)CD8(+)CD3(lo) double-positive (DP) thymocytes. Bcl11b-deficient DP cells displayed a gene expression program associated with mature CD4(+)CD8(-) and CD4(-)CD8(+) single-positive (SP) thymocytes, including upregulation of key transcriptional regulators, such as Zbtb7b and Runx3. Bcl11b interacted with regulatory regions of many dysregulated genes, suggesting a direct role in the transcriptional regulation of these genes. However, inappropriate expression of lineage-associated genes did not result in enhanced differentiation, as deletion of Bcl11b in DP cells prevented development of SP thymocytes, and that of canonical NKT cells. These data establish Bcl11b as a crucial transcriptional regulator in thymocytes, in which Bcl11b functions to prevent the premature expression of genes fundamental to the SP and NKT cell differentiation programs.


Assuntos
Diferenciação Celular , Células Precursoras de Linfócitos T/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Antígenos CD4/biossíntese , Antígenos CD8/biossíntese , Diferenciação Celular/imunologia , Linhagem da Célula , Células Cultivadas , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos , Camundongos Knockout , Células Precursoras de Linfócitos T/citologia , Ligação Proteica , Elementos Reguladores de Transcrição/imunologia , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Timo/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Ativação Transcricional/imunologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA