Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(3): e1009983, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35312737

RESUMO

Intracellular transport via microtubule-based dynein and kinesin family motors plays a key role in viral reproduction and transmission. We show here that Kinesin Family Member 4 (KIF4) plays an important role in HBV/HDV infection. We intended to explore host factors impacting the HBV life cycle that can be therapeutically addressed using siRNA library transfection and HBV/NLuc (HBV/NL) reporter virus infection in HepG2-hNTCP cells. KIF4 silencing resulted in a 3-fold reduction in luciferase activity following HBV/NL infection. KIF4 knockdown suppressed both HBV and HDV infection. Transient KIF4 depletion reduced surface and raised intracellular NTCP (HBV/HDV entry receptor) levels, according to both cellular fractionation and immunofluorescence analysis (IF). Overexpression of wild-type KIF4 but not ATPase-null KIF4 mutant regained the surface localization of NTCP and significantly restored HBV permissiveness in these cells. IF revealed KIF4 and NTCP colocalization across microtubule filaments, and a co-immunoprecipitation study revealed that KIF4 interacts with NTCP. KIF4 expression is regulated by FOXM1. Interestingly, we discovered that RXR agonists (Bexarotene, and Alitretinoin) down-regulated KIF4 expression via FOXM1-mediated suppression, resulting in a substantial decrease in HBV-Pre-S1 protein attachment to HepG2-hNTCP cell surface and subsequent HBV infection in both HepG2-hNTCP and primary human hepatocyte (PXB) (Bexarotene, IC50 1.89 ± 0.98 µM) cultures. Overall, our findings show that human KIF4 is a critical regulator of NTCP surface transport and localization, which is required for NTCP to function as a receptor for HBV/HDV entry. Furthermore, small molecules that suppress or alleviate KIF4 expression would be potential antiviral candidates targeting HBV and HDV entry.


Assuntos
Vírus da Hepatite B , Vírus Delta da Hepatite , Cinesinas , Transportadores de Ânions Orgânicos Dependentes de Sódio , Simportadores , Internalização do Vírus , Família , Células Hep G2 , Vírus da Hepatite B/fisiologia , Vírus Delta da Hepatite/fisiologia , Humanos , Cinesinas/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Receptores X de Retinoides/agonistas , Simportadores/genética , Simportadores/metabolismo
2.
Virol J ; 20(1): 93, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165426

RESUMO

BACKGROUND: Hepatitis B virus (HBV) infection is a global public health concern. Precise and sensitive detection of viral markers, including HBV DNA and HBs antigen (Ag), is essential to determine HBV infection. METHODS: The sensitivities and specificities of 5 HBV DNA and 14 HBsAg kits were evaluated using World Health Organization International Standards (WHO IS) and the Regional Reference Panel (RRP) consisting of 64 HBsAg-negative and 80 HBsAg-positive specimens. RESULTS: All 5 HBV DNA kits detected HBV DNA in the WHO IS at a concentration of 10 IU/mL. The sensitivity and specificity to the RRP were 98.8-100% and 96.9-100%, respectively. HBV DNA titers were well correlated among the 5 kits regardless of HBV genotype. However, discordance of the HBV DNA titer was found in 5 specimens measured by CAP/CTM HBV v2.0. Among 12 automated HBsAg kits, the minimum detectable concentrations in the WHO IS varied from 0.01 to 0.1 IU/mL. Two lateral flow assays were positive for WHO IS concentrations greater than or equal to 1.0 and 0.1 IU/mL, respectively. When analyzed by the RRP, 12 automated kits exhibited a sensitivity of 98.8-100%, and 2 lateral flow assays showed sensitivities of 93.8% and 100%. The specificities of HBsAg kits were 100%. In the quantification of HBsAg, some kits showed a poor correlation of measurements with each other and showed up to a 1.7-fold difference in the regression coefficient of HBsAg titers. There were variations in the correlations of measurements among HBsAg kits when analyzed by genotype. CONCLUSIONS: Five HBV DNA kits showed sufficient sensitivity and specificity to determine HBV infection. HBV DNA titers were compatible with each other irrespective of HBV genotypes. HBsAg kits had enough sensitivity and specificity to screen for HBV infection. One of the lateral flow assays had a nearly equivalent sensitivity to that of the automated HBsAg kit. HBsAg titers quantified by the evaluated kits were not compatible across the kits. Genotype-dependent amino acid variations might affect the quantification of HBsAg titers.


Assuntos
Hepatite B Crônica , Hepatite B , Humanos , Vírus da Hepatite B/genética , Antígenos de Superfície da Hepatite B/genética , DNA Viral/genética , Japão , Hepatite B/diagnóstico
3.
Uirusu ; 72(2): 149-158, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-38220203

RESUMO

Although the current hepatitis B (HB) vaccine comprising yeast-derived small hepatitis B surface antigen (HBsAg) is potent and safe and used worldwide, specific concerns should not be ignored, such as the attenuated prophylaxis against hepatitis B virus (HBV) infection with specific amino acid polymorphisms, called vaccine-escape mutations (VEMs). We investigated a novel HB vaccine consisting of large-HBsAg that covers the shortcomings of the current HB vaccine in a nonhuman primate model. The yeast-derived large-HBsAg was mixed with the adjuvant and used to immunize rhesus macaques, and the induction of antibodies to HBsAg was compared with that of the current HB vaccine. The current HB vaccine predominantly induced antibodies to small-HBsAg, whereas immunization with the large-HBsAg vaccine mainly induced antibodies to the preS1 region. Although the antibodies induced by the current HB vaccine could not prevent infection of HBV with VEMs, the large-HBsAg vaccine-induced antibodies neutralized infection of HBV with VEMs at levels similar to those of the wild type. The HBV genotypes that exhibited attenuated neutralization by induced antibodies differed between these vaccines. In conclusion, the novel HB vaccine consisting of large-HBsAg was revealed to be useful to compensate for shortcomings of the current HB vaccine. The combined use of these HB vaccines may be able to induce antibodies that can neutralize HBV strains with VEMs or multiple HBV genotypes.


Assuntos
Vírus da Hepatite B , Hepatite B , Animais , Vírus da Hepatite B/genética , Vacinas contra Hepatite B/uso terapêutico , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/química , Macaca mulatta , Saccharomyces cerevisiae , Anticorpos Anti-Hepatite B/genética , Mutação , Hepatite B/prevenção & controle , Hepatite B/tratamento farmacológico
4.
J Virol ; 95(16): e0240120, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34076480

RESUMO

Entecavir (ETV) is a widely used anti-hepatitis B virus (HBV) drug. However, the emergence of resistant mutations in HBV reverse transcriptase (RT) results in treatment failure. To understand the mechanism underlying the development of ETV resistance by HBV RT, we analyzed the L180M, M204V, and L180M/M204V mutants using a combination of biochemical and structural techniques. ETV-triphosphate (ETV-TP) exhibited competitive inhibition with dGTP in both wild-type (wt) RT and M204V RT, as observed using Lineweaver-Burk plots. In contrast, RT L180M or L180M/M204V did not fit either competitive, uncompetitive, noncompetitive, or typical mixed inhibition, although ETV-TP was a competitive inhibitor of dGTP. Crystallography of HIV RTY115F/F116Y/Q151M/F160M/M184V, mimicking HBV RT L180M/M204V, showed that the F115 bulge (F88 in HBV RT) caused by the F160M mutation induced deviated binding of dCTP from its normal tight binding position. Modeling of ETV-TP on the deviated dCTP indicated that a steric clash could occur between ETV-TP methylene and the 3'-end nucleoside ribose. ETV-TP is likely to interact primarily with HBV RT M171 prior to final accommodation at the deoxynucleoside triphosphate (dNTP) binding site (Y. Yasutake, S. Hattori, H. Hayashi, K. Matsuda, et al., Sci Rep 8:1624, 2018, https://doi.org/10.1038/s41598-018-19602-9). Therefore, in HBV RT L180M/M204V, ETV-TP may be stuck at M171, a residue that is conserved in almost all HBV isolates, leading to the strange inhibition pattern observed in the kinetic analysis. Collectively, our results provide novel insights into the mechanism of ETV resistance of HBV RT caused by L180M and M204V mutations. IMPORTANCE HBV infects 257 million people in the world, who suffer from elevated risks of liver cirrhosis and cancer. ETV is one of the most potent anti-HBV drugs, and ETV resistance mutations in HBV RT have been extensively studied. Nevertheless, the mechanisms underlying ETV resistance have remained elusive. We propose an attractive hypothesis to explain ETV resistance and effectiveness using a combination of kinetic and structural analyses. ETV is likely to have an additional interaction site, M171, beside the dNTP pocket of HBV RT; this finding indicates that nucleos(t)ide analogues (NAs) recognizing multiple interaction sites within RT may effectively inhibit the enzyme. Modification of ETV may render it more effective and enable the rational design of efficient NA inhibitors.


Assuntos
Farmacorresistência Viral/genética , Guanina/análogos & derivados , Vírus da Hepatite B/efeitos dos fármacos , DNA Polimerase Dirigida por RNA/química , Inibidores da Transcriptase Reversa/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Nucleotídeos de Desoxicitosina/metabolismo , Nucleotídeos de Desoxiguanina/metabolismo , Guanina/metabolismo , Guanina/farmacologia , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , Vírus da Hepatite B/química , Vírus da Hepatite B/enzimologia , Concentração Inibidora 50 , Cinética , Lamivudina/metabolismo , Lamivudina/farmacologia , Mutação , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Inibidores da Transcriptase Reversa/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
J Virol ; 95(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33298539

RESUMO

Hepatitis B virus (HBV) infection is a major public health problem. Human hepatocytes are infected with HBV via binding between the preS1 region in the large envelope protein of HBV and sodium taurocholate cotransporting polypeptide. Although several monoclonal antibodies (MAbs) that recognize the receptor binding domain in preS1 and neutralize HBV infection have been isolated, details of neutralizing epitopes are not understood. In this study, we generated 13 MAbs targeting the preS1 receptor binding domain from preS1-specific memory B cells derived from DNA immunized mice. The MAbs were classified into three groups according to the epitope regions, designated epitopes I-III. A virus neutralization assay revealed that MAbs recognizing epitopes I and III neutralized HBV infection, suggesting that these domains are critical epitopes for viral neutralization. In addition, a neutralization assay against multiple genotypes of HBV revealed that epitope I is a semi-pangenotypic neutralizing epitope, whereas epitope III is a genotype-specific epitope. We also showed that neutralizing MAbs against preS1 could neutralize HBV bearing vaccine-induced escape mutation. These findings provide insight into novel immunoprophylaxis for the prevention and treatment of HBV infection.IMPORTANCE The HBV preS1 2-47 aa region (preS1/2-47) is essential for virus binding with sodium taurocholate cotransporting polypeptide. Several MAbs targeting preS1/2-47 have been reported to neutralize HBV infection; however, which region in preS1/2-47 contains the critical neutralizing epitope for HBV infection is unclear. Here, we generated several MAbs targeting preS1/2-47 and found that MAbs recognizing the N- or C-terminus of preS1/2-47 remarkably neutralized HBV infection. We further confirmed the neutralizing activity of anti-preS1 MAbs against HBV with vaccine escape mutation. These data clarified the relationship between the antibody epitope and the virus neutralizing activity and also suggested the potential ability of a vaccine antigen containing the preS1 region to overcome the weakness of current HB vaccines comprising the small S protein.

6.
J Virol ; 95(15): e0076721, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980595

RESUMO

Hepatitis B virus (HBV) is a stealth virus that exhibits only minimal induction of the interferon system, which is required for both innate and adaptive immune responses. However, 90% of acutely infected adults can clear the virus, suggesting the presence of additional mechanisms that facilitate viral clearance. Here, we report that Maf bZIP transcription factor F (MafF) promotes host defense against infection with HBV. Using a small interfering RNA (siRNA) library and an HBV/NanoLuc (NL) reporter virus, we screened to identify anti-HBV host factors. Our data showed that silencing of MafF led to a 6-fold increase in luciferase activity after HBV/NL infection. Overexpression of MafF reduced HBV core promoter transcriptional activity, which was relieved upon mutation of the putative MafF binding region. Loss of MafF expression through CRISPR/Cas9 editing (in HepG2-hNTCP-C4 cells) or siRNA silencing (in primary hepatocytes [PXB cells]) induced HBV core RNA and HBV pregenomic RNA (pgRNA) levels, respectively, after HBV infection. MafF physically binds to the HBV core promoter and competitively inhibits HNF-4α binding to an overlapping sequence in the HBV enhancer II sequence (EnhII), as seen by chromatin immunoprecipitation (ChIP) analysis. MafF expression was induced by interleukin-1ß (IL-1ß) or tumor necrosis factor alpha (TNF-α) treatment in both HepG2 and PXB cells, in an NF-κB-dependent manner. Consistently, MafF expression levels were significantly enhanced and positively correlated with the levels of these cytokines in patients with chronic HBV infection, especially in the immune clearance phase. IMPORTANCE HBV is a leading cause of chronic liver diseases, infecting about 250 million people worldwide. HBV has developed strategies to escape interferon-dependent innate immune responses. Therefore, the identification of other anti-HBV mechanisms is important for understanding HBV pathogenesis and developing anti-HBV strategies. MafF was shown to suppress transcription from the HBV core promoter, leading to significant suppression of the HBV life cycle. Furthermore, MafF expression was induced in chronic HBV patients and in primary human hepatocytes (PXB cells). This induction correlated with the levels of inflammatory cytokines (IL-1ß and TNF-α). These data suggest that the induction of MafF contributes to the host's antiviral defense by suppressing transcription from selected viral promoters. Our data shed light on a novel role for MafF as an anti-HBV host restriction factor.


Assuntos
Hepatite B Crônica/patologia , Imunidade Inata/imunologia , Fator de Transcrição MafF/metabolismo , Proteínas Nucleares/metabolismo , Transcrição Gênica/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Células Hep G2 , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Humanos , Interleucina-1beta/imunologia , Fator de Transcrição MafF/genética , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Fator de Necrose Tumoral alfa/imunologia
7.
Hepatology ; 73(2): 520-532, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32446278

RESUMO

BACKGROUND AND AIMS: An efficient cell-culture system for hepatitis B virus (HBV) is indispensable for research on viral characteristics and antiviral reagents. Currently, for the HBV infection assay in cell culture, viruses derived from HBV genome-integrated cell lines of HepG2.2.15 or HepAD-38 are commonly used. However, these viruses are not suitable for the evaluation of polymorphism-dependent viral characteristics or resistant mutations against antiviral reagents. HBV obtained by the transient transfection of the ordinary HBV molecular clone has limited infection efficiencies in cell culture. APPROACH AND RESULTS: We found that an 11-amino-acid deletion (d11) in the preS1 region enhances the infectivity of cell-culture-generated HBV (HBVcc) to sodium taurocholate cotransporting polypeptide-transduced HepG2 (HepG2/NTCP) cells. Infection of HBVcc derived from a d11-introduced genotype C strain (GTC-d11) was ~10-fold more efficient than infection of wild-type GTC (GTC-wt), and the number of infected cells was comparable between GTC-d11- and HepG2.2.15-derived viruses when inoculated with the same genome equivalents. A time-dependent increase in pregenomic RNA and efficient synthesis of covalently closed circular DNA were detected after infection with the GTC-d11 virus. The involvement of d11 in the HBV large surface protein in the enhanced infectivity was confirmed by an HBV reporter virus and hepatitis D virus infection system. The binding step of the GTC-d11 virus onto the cell surface was responsible for this efficient infection. CONCLUSIONS: This system provides a powerful tool for studying the infection and propagation of HBV in cell culture and also for developing the antiviral strategy against HBV infection.


Assuntos
Técnicas de Cultura de Células/métodos , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/patogenicidade , Hepatite B/virologia , Precursores de Proteínas/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Células Hep G2 , Hepatite B/tratamento farmacológico , Hepatite B/patologia , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Humanos , Precursores de Proteínas/genética
8.
Sex Transm Dis ; 49(1): e29-e33, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074999

RESUMO

ABSTRACT: We report on hepatitis C virus genotype 2c infection in 12 human immunodeficiency virus-infected men who have sex with men in Tokyo, Japan. The uncommon strains from the 12 patients were genetically clustered; they suggested an emerging outbreak in this population at high risk of sexually transmitted infections.


Assuntos
Infecções por HIV , Hepatite C , Minorias Sexuais e de Gênero , Genótipo , HIV , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , Hepacivirus/genética , Hepatite C/epidemiologia , Homossexualidade Masculina , Humanos , Japão/epidemiologia , Masculino , Tóquio/epidemiologia
9.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955844

RESUMO

In microbiological research, it is important to understand the time course of each step in a pathogen's lifecycle and changes in the host cell environment induced by infection. This study is the first to develop a real-time monitoring system that kinetically detects luminescence reporter activity over time without sampling cells or culture supernatants for analyzing the virus replication. Subgenomic replicon experiments with hepatitis C virus (HCV) showed that transient translation and genome replication can be detected separately, with the first peak of translation observed at 3-4 h and replication beginning around 20 h after viral RNA introduction into cells. From the bioluminescence data set measured every 30 min (48 measurements per day), the initial rates of translation and replication were calculated, and their capacity levels were expressed as the sums of the measured signals in each process, which correspond to the areas on the kinetics graphs. The comparison of various HuH-7-derived cell lines showed that the bioluminescence profile differs among cell lines, suggesting that both translation and replication capacities potentially influence differences in HCV susceptibility. The effects of RNA mutations within the 5' UTR of the replicon on viral translation and replication were further analyzed in the system developed, confirming that mutations to the miR-122 binding sites primarily reduce replication activity rather than translation. The newly developed real-time monitoring system should be applied to the studies of various viruses and contribute to the analysis of transitions and progression of each process of their life cycle.


Assuntos
Hepacivirus , Hepatite C , Regiões 5' não Traduzidas , Hepatite C/genética , Humanos , RNA Viral/genética , RNA Viral/metabolismo , Replicon/genética , Replicação Viral
10.
Biochem Biophys Res Commun ; 567: 1-8, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34130179

RESUMO

Natural product-derived crude drugs are expected to yield an abundance of new drugs to treat infectious diseases. Hepatitis C virus (HCV) is an oncogenic virus that significantly impacts public health. In this study, we sought to identify anti-HCV compounds in extracts of natural products. A total of 110 natural compounds extracted from several herbal medicine plants were examined for antiviral activity against HCV. Using a Huh7-mCherry-NLS-IPS reporter system for HCV infection, we first performed a rapid screening for anti-HCV compounds extracted from crude drugs. The compounds threo-2,3-bis(4-hydroxy-3-methoxyphenyl)-3-butoxypropan-1-ol (#106) and medioresinol (#110), which were extracted from Crataegus cuneate, exhibited anti-HCV activity and significantly inhibited HCV production in a dose-dependent manner. Analyses using HCV pseudoparticle and subgenomic replicon systems indicated that compounds #106 and #110 specifically inhibit HCV RNA replication but not viral entry or translation. Interestingly, compound #106 also inhibited the replication and production of hepatitis A virus. Our findings suggest that C. cuneate is a new source for novel anti-hepatitis virus drug development.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Extratos Vegetais/farmacologia , Antivirais/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Crataegus/química , Hepacivirus/fisiologia , Humanos , Extratos Vegetais/química , Plantas Medicinais/química , Replicação Viral/efeitos dos fármacos
12.
Hepatol Res ; 50(3): 283-291, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31756766

RESUMO

AIM: Interferon (IFN)-λ3 is known to have antiviral effects against various pathogens. Recently, it has been reported that the production of IFN-λ3 in colon cells after the administration of nucleotide analogs is expected to reduce hepatitis B surface antigen in chronic hepatitis B patients. Here, we aimed to prove the antiviral effects of IFN-λ3 on hepatitis B virus (HBV) by using an in vitro HBV production and infection system. METHODS: We used HepG2.2.15-derived HBV as an inoculum and the replication-competent molecular clone of HBV as a replication model. RESULTS: By administering IFN-λ3 to HepG2 cells transfected with the HBV molecular clone, the production of hepatitis B surface antigen and hepatitis B core-related antigen was reduced dose-dependently. IFN-λ3 treatment also reduced the number of HBV-positive cells and the synthesis of covalently closed circular DNA after infection of HepG2.2.15-derived HBV to sodium taurocholate cotransporting polypeptide-transduced HepG2 cells. The inhibitory effect on HBV infection by IFN-λ3 was confirmed by using a recombinant a HBV reporter virus system. To elucidate the underlying mechanisms of the anti-HBV effect of IFN-λ3, we assessed the transcription of HBV RNA and the production of core-associated HBV DNA in HBV molecular clone-transfected HepG2 cells, and found that both parameters were reduced by IFN-λ3. CONCLUSIONS: We observed that the administration of IFN-λ3 inhibits HBV infection and the production of HBV proteins at the HBV RNA transcription level. This finding provides novel insight into the treatment of chronic hepatitis B patients with the administration or induction of IFN-λ3.

13.
Gut ; 67(2): 372-379, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-27797937

RESUMO

OBJECTIVE: Although HCV is a major cause of chronic liver disease worldwide, there is currently no prophylactic vaccine for this virus. Thus, the development of an HCV vaccine that can induce both humoural and cellular immunity is urgently needed. To create an effective HCV vaccine, we evaluated neutralising antibody induction and cellular immune responses following the immunisation of a non-human primate model with cell culture-generated HCV (HCVcc). DESIGN: To accomplish this, 10 common marmosets were immunised with purified, inactivated HCVcc in combination with two different adjuvants: the classically used aluminum hydroxide (Alum) and the recently established adjuvant: CpG oligodeoxynucleotide (ODN) wrapped by schizophyllan (K3-SPG). RESULTS: The coadministration of HCVcc with K3-SPG efficiently induced immune responses against HCV, as demonstrated by the production of antibodies with specific neutralising activity against chimaeric HCVcc with structural proteins from multiple HCV genotypes (1a, 1b, 2a and 3a). The induction of cellular immunity was also demonstrated by the production of interferon-γ mRNA in spleen cells following stimulation with the HCV core protein. These changes were not observed following immunisation with HCVcc/Alum preparation. No vaccination-related abnormalities were detected in any of the immunised animals. CONCLUSIONS: The current preclinical study demonstrated that a vaccine included both HCVcc and K3-SPG induced humoural and cellular immunity in marmosets. Vaccination with this combination resulted in the production of antibodies exhibiting cross-neutralising activity against multiple HCV genotypes. Based on these findings, the vaccine created in this study represents a promising, potent and safe prophylactic option against HCV.


Assuntos
Anticorpos Neutralizantes/sangue , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/sangue , Vacinação , Vacinas contra Hepatite Viral/imunologia , Adjuvantes Imunológicos/administração & dosagem , Hidróxido de Alumínio/administração & dosagem , Hidróxido de Alumínio/imunologia , Animais , Callithrix , Células HEK293 , Antígenos da Hepatite C/imunologia , Humanos , Imunidade Celular , Interferon gama/genética , Camundongos , RNA Mensageiro/metabolismo , Baço/citologia , Proteínas do Core Viral/imunologia
14.
Biochem Biophys Res Commun ; 503(3): 1854-1860, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30055801

RESUMO

Hepatitis B virus (HBV) -x protein is a transcriptional regulator required for the HBV life cycle. HBx also induces complications in the host such as hepatocellular carcinoma. We previously showed that HBx mRNA is degraded by the Ski2/RNA exosome complex. In the present study, we report the regulation of this system through the control of Ski2 expression. We identified interleukin (IL) -1ß as an inducer of expression from the Ski2 promoter. IL-1ß induced the expression of ATF3 transcription factor, which in turn binds to cyclic AMP-responsive element sequence in the Ski2 promoter and is responsible for Ski2 promoter induction by IL-1ß. We previously reported that Ski2 expression increases HBx mRNA degradation; consistent with those data, we showed here that HBx mRNA is degraded in response to IL-1ß treatment. Interestingly, HBx also significantly induced Ski2 expression. To our knowledge, this is the first report to show activation of the Ski2/RNA exosome complex by both the host and HBV. Understanding the regulation of the Ski2/RNA exosome system is expected to facilitate prevention of HBx-mediated complications through targeting the posttranscriptional degradation of HBx mRNA; and will also help shedding a light on the role of RNA decay systems in inflammation.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Interleucina-1beta/metabolismo , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Animais , Células Cultivadas , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Células Hep G2 , Humanos , Camundongos , Camundongos SCID , Camundongos Transgênicos , RNA Mensageiro/genética , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias
15.
J Virol ; 91(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27928005

RESUMO

Hepatitis C virus (HCV) strain JFH-1, which belongs to genotype 2a, replicates autonomously in cultured cells, whereas another genotype 2a strain, J6CF, does not. Previously, we found that replacement of the NS3 helicase and NS5B-to-3'X regions of J6CF with those of JFH-1 confers J6CF replication competence. In this study, we aimed to identify the minimum modifications within these genomic regions needed to establish replication-competent J6CF. We previously identified 4 mutations in the NS5B-to-3'X region that could be used instead of replacement of this region to confer J6CF replication competence. Here, we induced cell culture-adaptive mutations in J6CF by the long-term culture of J6CF/JFH-1 chimeras composed of JFH-1 NS5B-to-3'X or individual parts of this but not the NS3 helicase region. After 2 months of culture, efficient HCV replication and infectious virus production in chimeric RNA-transfected cells were observed, and several amino acid mutations in NS4A were identified in replicating HCV genomes. The introduction of NS4A mutations into the J6CF/JFH-1 chimeras enhanced viral replication and infectious virus production. Immunofluorescence microscopy demonstrated that some of these mutations altered the subcellular localization of the coexpressed NS3 protein and affected the interaction between NS3 and NS4A. Finally, introduction of the most effective NS4A mutation, A1680E, into J6CF contributed to its replication competence in cultured cells when introduced in conjunction with four previously identified adaptive mutations in the NS5B-to-3'X region. In conclusion, we identified an adaptive mutation in NS4A that confers J6CF replication competence when introduced in conjunction with 4 mutations in NS5B-to-3'X and established a replication-competent J6CF strain with minimum essential modifications in cultured cells. IMPORTANCE: The HCV cell culture system using the JFH-1 strain and HuH-7 cells can be used to assess the complete HCV life cycle in cultured cells. This cell culture system has been used to develop direct-acting antivirals against HCV, and the ability to use various HCV strains within this system is important for future studies. In this study, we aimed to establish a novel HCV cell culture system using another HCV genotype 2a strain, J6CF, which replicates in chimpanzees but not in cultured cells. We identified an effective cell culture-adaptive mutation in NS4A and established a replication-competent J6CF strain in cultured cells with minimum essential modifications. The described strategy can be used in establishing a novel HCV cell culture system, and the replication-competent J6CF clone composed of the minimum essential modifications needed for cell culture adaptation will be valuable as another representative of genotype 2a strains.


Assuntos
Hepacivirus/fisiologia , Hepatite C/virologia , Mutação , Proteínas não Estruturais Virais/genética , Replicação Viral , Substituição de Aminoácidos , Linhagem Celular , Células Cultivadas , Genoma Viral , Genótipo , Humanos , RNA Viral , Recombinação Genética , Proteínas não Estruturais Virais/metabolismo
16.
PLoS Pathog ; 12(2): e1005441, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26867128

RESUMO

Although information regarding morphogenesis of the hepatitis C virus (HCV) is accumulating, the mechanism(s) by which the HCV genome encapsidated remains unknown. In the present study, in cell cultures producing HCV, the molecular ratios of 3' end- to 5' end-regions of the viral RNA population in the culture medium were markedly higher than those in the cells, and the ratio was highest in the virion-rich fraction. The interaction of the 3' untranslated region (UTR) with Core in vitro was stronger than that of the interaction of other stable RNA structure elements across the HCV genome. A foreign gene flanked by the 3' UTR was encapsidated by supplying both viral NS3-NS5B proteins and Core-NS2 in trans. Mutations within the conserved stem-loops of the 3' UTR were observed to dramatically diminish packaging efficiency, suggesting that the conserved apical motifs of the 3´ X region are important for HCV genome packaging. This study provides evidence of selective packaging of the HCV genome into viral particles and identified that the 3' UTR acts as a cis-acting element for encapsidation.


Assuntos
Regiões 3' não Traduzidas/fisiologia , Hepacivirus/genética , RNA Viral/genética , Montagem de Vírus/genética , Regiões 5' não Traduzidas/genética , Linhagem Celular , Humanos , Proteínas não Estruturais Virais/metabolismo , Vírion/metabolismo
17.
J Biol Chem ; 291(31): 15958-74, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27281821

RESUMO

Hepatitis B virus (HBV) is a stealth virus, minimally inducing the interferon system required for efficient induction of both innate and adaptive immune responses. However, 90% of acutely infected adults can clear the virus, suggesting the presence of other, interferon-independent pathways leading to viral clearance. Given the known ability of helicases to bind viral nucleic acids, we performed a functional screening assay to identify helicases that regulate HBV replication. We identified the superkiller viralicidic activity 2-like (SKIV2L) RNA helicase (a homolog of the Saccharomyces cerevisiae Ski2 protein) on the basis of its direct and preferential interaction with HBV X-mRNA. This interaction was essential for HBV X-mRNA degradation at the RNA exosome. The degradation of HBV X-mRNA at the RNA exosome was also mediated by HBS1L (HBS1-like translational GTPase) protein, a known component of the host RNA quality control system. We found that the redundant HBV-precore translation initiation site present at the 3'-end of HBV X-mRNA (3' precore) is translationally active. The initiation of translation from this site without a proper stop codon was identified by the non-stop-mediated RNA decay mechanism leading to its degradation. Although 3' precore is present in the five main HBV-RNA transcripts, only X-mRNA lacks the presence of an upstream start codons for large, middle, and small (L, M, and S) HBV surface proteins. These upstream codons are in-frame with 3' precore translation initiation site, blocking its translation from the other HBV-mRNA transcripts. To our knowledge, this is the first demonstration of the anti-viral function of the non-stop-mediated RNA decay mechanism.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Vírus da Hepatite B/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Transativadores/biossíntese , Códon de Iniciação/genética , Códon de Iniciação/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Células Hep G2 , Vírus da Hepatite B/genética , Humanos , RNA Mensageiro/genética , RNA Viral/genética , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias
18.
J Virol ; 90(20): 9058-74, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27489280

RESUMO

UNLABELLED: Cell culture systems reproducing virus replication can serve as unique models for the discovery of novel bioactive molecules. Here, using a hepatitis C virus (HCV) cell culture system, we identified neoechinulin B (NeoB), a fungus-derived compound, as an inhibitor of the liver X receptor (LXR). NeoB was initially identified by chemical screening as a compound that impeded the production of infectious HCV. Genome-wide transcriptome analysis and reporter assays revealed that NeoB specifically inhibits LXR-mediated transcription. NeoB was also shown to interact directly with LXRs. Analysis of structural analogs suggested that the molecular interaction of NeoB with LXR correlated with the capacity to inactivate LXR-mediated transcription and to modulate lipid metabolism in hepatocytes. Our data strongly suggested that NeoB is a novel LXR antagonist. Analysis using NeoB as a bioprobe revealed that LXRs support HCV replication: LXR inactivation resulted in dispersion of double-membrane vesicles, putative viral replication sites. Indeed, cells treated with NeoB showed decreased replicative permissiveness for poliovirus, which also replicates in double-membrane vesicles, but not for dengue virus, which replicates via a distinct membrane compartment. Together, our data suggest that LXR-mediated transcription regulates the formation of virus-associated membrane compartments. Significantly, inhibition of LXRs by NeoB enhanced the activity of all known classes of anti-HCV agents, and NeoB showed especially strong synergy when combined with interferon or an HCV NS5A inhibitor. Thus, our chemical genetics analysis demonstrates the utility of the HCV cell culture system for identifying novel bioactive molecules and characterizing the virus-host interaction machinery. IMPORTANCE: Hepatitis C virus (HCV) is highly dependent on host factors for efficient replication. In the present study, we used an HCV cell culture system to screen an uncharacterized chemical library. Our results identified neoechinulin B (NeoB) as a novel inhibitor of the liver X receptor (LXR). NeoB inhibited the induction of LXR-regulated genes and altered lipid metabolism. Intriguingly, our results indicated that LXRs are critical to the process of HCV replication: LXR inactivation by NeoB disrupted double-membrane vesicles, putative sites of viral replication. Moreover, NeoB augmented the antiviral activity of all known classes of currently approved anti-HCV agents without increasing cytotoxicity. Thus, our strategy directly links the identification of novel bioactive compounds to basic virology and the development of new antiviral agents.


Assuntos
Alcaloides/metabolismo , Antivirais/metabolismo , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Fungos/química , Hepacivirus/efeitos dos fármacos , Receptores X do Fígado/antagonistas & inibidores , Piperazinas/metabolismo , Alcaloides/isolamento & purificação , Antivirais/isolamento & purificação , Técnicas de Cultura de Células , Linhagem Celular , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/fisiologia , Sinergismo Farmacológico , Hepacivirus/fisiologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Piperazinas/isolamento & purificação , Poliovirus/efeitos dos fármacos , Poliovirus/fisiologia , Ligação Proteica , Replicação Viral/efeitos dos fármacos
19.
Hepatol Res ; 46(9): 924-32, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26606891

RESUMO

AIM: Although recent studies indicate that supplementation with vitamin D (VD) potentiates a sustained viral response by interferon-based therapy to chronic hepatitis C, detailed mechanisms are not fully defined. The production of cathelicidin, an antimicrobial peptide, has been demonstrated to be part of the VD-dependent antimicrobial pathway in innate immunity. Cathelicidin is known to directly kill or inhibit the growth of microbial pathogens including mycobacteria and viruses. METHODS: We used a hepatitis C virus (HCV) cell culture system to clarify the anti-HCV effects of the human cathelicidin, LL-37. HuH-7 cells were administrated with LL-37 and infected with cell culture-generated HCV (HCVcc). HCV propagation was estimated by measuring the level of HCV core antigen (Ag). RESULTS: Treatment with LL-37 resulted in decreased intra- and extracellular levels of HCV core Ag, suggesting inhibition of HCV propagation. To assess the effects of LL-37 on HCV replication, JFH-1 subgenomic replicon RNA-transfected cells were treated with LL-37. However, inhibition of HCV replication was not detected by this assay. To clarify the effects on HCV infection, we treated HCVcc with LL-37 and removed the antimicrobial peptide prior to use of the virus in infection. This exposure of HCVcc to LL-37 diminished the infectivity titers in a dose-dependent fashion. Iodixanol density gradient analysis revealed that the peak fraction of infectivity titer was eliminated by LL-37 treatment. CONCLUSION: The VD-associated antimicrobial peptide LL-37 attenuated the infectivity of HCV. This anti-HCV effect of LL-37 may explain the contribution of VD to the improved efficacy of interferon-based therapy.

20.
J Virol ; 88(13): 7541-55, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24760886

RESUMO

UNLABELLED: Nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) possesses multiple functions in the viral life cycle. NS5A is a phosphoprotein that exists in hyperphosphorylated and basally phosphorylated forms. Although the phosphorylation status of NS5A is considered to have a significant impact on its function, the mechanistic details regulating NS5A phosphorylation, as well as its exact roles in the HCV life cycle, are still poorly understood. In this study, we screened 404 human protein kinases via in vitro binding and phosphorylation assays, followed by RNA interference-mediated gene silencing in an HCV cell culture system. Casein kinase I-α (CKI-α) was identified as an NS5A-associated kinase involved in NS5A hyperphosphorylation and infectious virus production. Subcellular fractionation and immunofluorescence confocal microscopy analyses showed that CKI-α-mediated hyperphosphorylation of NS5A contributes to the recruitment of NS5A to low-density membrane structures around lipid droplets (LDs) and facilitates its interaction with core protein and the viral assembly. Phospho-proteomic analysis of NS5A with or without CKI-α depletion identified peptide fragments that corresponded to the region located within the low-complexity sequence I, which is important for CKI-α-mediated NS5A hyperphosphorylation. This region contains eight serine residues that are highly conserved among HCV isolates, and subsequent mutagenesis analysis demonstrated that serine residues at amino acids 225 and 232 in NS5A (genotype 2a) may be involved in NS5A hyperphosphorylation and hyperphosphorylation-dependent regulation of virion production. These findings provide insight concerning the functional role of NS5A phosphorylation as a regulatory switch that modulates its multiple functions in the HCV life cycle. IMPORTANCE: Mechanisms regulating NS5A phosphorylation and its exact function in the HCV life cycle have not been clearly defined. By using a high-throughput screening system targeting host protein kinases, we identified CKI-α as an NS5A-associated kinase involved in NS5A hyperphosphorylation and the production of infectious virus. Our results suggest that the impact of CKI-α in the HCV life cycle is more profound on virion assembly than viral replication via mediation of NS5A hyperphosphorylation. CKI-α-dependent hyperphosphorylation of NS5A plays a role in recruiting NS5A to low-density membrane structures around LDs and facilitating its interaction with the core for new virus particle formation. By using proteomic approach, we identified the region within the low-complexity sequence I of NS5A that is involved in NS5A hyperphosphorylation and hyperphosphorylation-dependent regulation of infectious virus production. These findings will provide novel mechanistic insights into the roles of NS5A-associated kinases and NS5A phosphorylation in the HCV life cycle.


Assuntos
Caseína Quinase Ialfa/metabolismo , Hepacivirus/fisiologia , Hepatite C/virologia , Proteínas não Estruturais Virais/metabolismo , Vírion/fisiologia , Sequência de Aminoácidos , Western Blotting , Caseína Quinase Ialfa/antagonistas & inibidores , Caseína Quinase Ialfa/genética , Células Cultivadas , Imunofluorescência , Hepatite C/metabolismo , Humanos , Imunoprecipitação , Dados de Sequência Molecular , Fosforilação , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA