Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Biochem Nutr ; 74(2): 136-140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38510689

RESUMO

The intestine functions as a barrier preventing the entry of extrinsic factors into the body. This barrier function is disrupted by oxidative damage along with an impaired mucosal layer. Excessive exercise can generate oxidative stress in the intestinal tissue; however, the effect of exercise-induced oxidative stress on intestinal permeability is unclear. In this study, we examined the involvement of oxidative stress in barrier function of the ileum of mice following high-intensity exercise. Male ICR mice (12-week-old) were divided into sedentary and exercise groups. Mice in the exercise group underwent a single bout of treadmill running, and the ileum was collected for histological and biochemical analyses. Plasma fluorescence intensity level after oral administration of fluorescein isothiocyanate-dextran gradually increased until 30 min after exercise in response to intensity of exercise. Relatively high levels of oxidative proteins and low level of claudin-1, a tight-junction protein, were observed in the exercise group. Treatment with a xanthine oxidase inhibitor suppressed exercise-induced increases in intestinal permeability. Moreover, excessive exercise training for two weeks led to relatively high intestinal permeability at rest. These results suggest that high-intensity exercise increases intestinal permeability and tight junction damage, which may be mediated by oxidative stress.

2.
Biosci Biotechnol Biochem ; 87(3): 303-307, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36520062

RESUMO

The PtO2-catalyzed hydrogenation of curcumin produced slightly predominant meso-octahydrocurcumin than raceme octahydrocurcumin. Similar result was found in the product obtained from tetrahydrocurcumin and NaBH4, whereas using palladium carbon as a catalyst increased the meso-octahydrocurcumin ratio. Compared with chemical methods, baker's yeast produced 3S,5S-octahydrocurcumin and meso-octahydrocurcumin from tetrahydrocurcumin. The different activity between raceme and meso-octahydrocurcumin was not found in our experiments.


Assuntos
Curcumina , Estereoisomerismo , Hidrogenação
3.
J Biochem Mol Toxicol ; 36(11): e23184, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35920443

RESUMO

Benzyl isothiocyanate (BITC), derived from cruciferous vegetables, is an organosulfur compound exerting antiproliferative effects in several human cancer cells. In this study, we assessed BITC as a potential osteoclastogenesis inhibitor and investigated its underlying mechanism. BITC at 5 µM significantly decreased the viability of the osteoclast-like differentiating RAW264.7 cells, coinciding with the downregulation of the primary biomarkers for osteoclast differentiation, such as the tartrate-resistant acid phosphatase activity and nuclear factor of activated T-cells gene expression. Not only BITC but also its metabolites, inhibited cell proliferation in the normal RAW264.7 cells, suggesting that BITC shows an anti-osteoclastogenesis effect in vivo after its ingestion and metabolism, possibly through an antiproliferative action. Both BITC and its metabolites also enhanced the DNA fragmentation and the caspase-3 activity, whereas their higher concentrations tended to suppress these effects. BITC was intracellularly accumulated when the cells were treated with its metabolites via their degradation into the free form. A quantitative experiment using the proteolysis/high performance liquid chromatography technique showed that the amount of BITC-lysine thiourea in the cells was also increased in a time-dependent manner, suggesting that lysine modification of the cellular proteins actually took place in the cells treated by BITC. Among the cellular proteins, the cleaved caspase-3 was identified as a potential target for lysine modification by BITC. Taken together, BITC dissociated from its metabolites as well as its free form might modulate osteoclastogenesis, possibly through inhibition of cell proliferation by protein modification.


Assuntos
Isotiocianatos , Lisina , Humanos , Camundongos , Animais , Caspase 3/metabolismo , Isotiocianatos/farmacologia , Proliferação de Células , Apoptose , Linhagem Celular Tumoral
4.
J Clin Biochem Nutr ; 69(1): 20-27, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34376910

RESUMO

Increased 5-hydroxytryptamine may be associated with the development and progression of inflammatory bowel disease. In this study, we examined the suppressive effect of flavonoids on the increased intra- and extracellular 5-hydroxytryptamine levels in rat mast RBL-2H3 cells, known to produce 5-hydroxytryptamine by the phorbol 12-myristate 13-acetate stimulation. Among the flavonoids examined, luteolin and quercetin significantly reduced the cellular 5-hydroxytryptamine concentration. Gene and protein expression analyses revealed that luteolin significantly suppressed cellular tryptophan hydroxylase 1 expression induced by phorbol 12-myristate 13-acetate stimulation. Mitogen-activated protein kinase/extracellular signal-regulated kinase signaling was also suppressed by luteolin, suggesting that this pathway is one of targets of 5-hydroxytryptamine modulation by luteolin. An in vivo experimental colitis model was prepared by administering 2.5% dextran sodium sulfate in drinking water to C57BL/6 mice for seven days. The ingestion of 0.1% dietary luteolin suppressed the increasing 5-hydroxytryptamine in the colorectal mucosa. In conclusion, luteolin possesses a suppressive effect on extensive 5-hydroxytryptamine formation in both experimental RBL-2H3 cells and colitis models.

5.
J Clin Biochem Nutr ; 69(1): 61-67, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34376915

RESUMO

Inflammatory bowel diseases, including Crohn's disease and ulcerative colitis, are chronic inflammatory disorders associated with oxidative stress. The intestines produce 5-hydroxytryptamine that may negatively affect disease state under inflammatory conditions when overproduced. 5-Hydroxytryptamine is a substrate for myeloperoxidase and is converted into reactive tryptamine-4,5-dione. Here, an experimental colitis model was established through oral administration of 5% dextran sulfate sodium to ICR mice for 7 days. Furthermore, the formation of tryptamine-4,5-dione in the colorectal mucosa/submucosa and colorectal tissue was analyzed by chemical and immunochemical methodologies. First, free tryptamine-4,5-dione in the homogenate was chemically trapped by o-phenylenediamine and analyzed as the stable phenazine derivative. Tryptamine-4,5-dione localization as adducted proteins in the colorectal tissue was immunohistochemically confirmed, and as demonstrated by both methods, this resulted in the significant increase of tryptamine-4,5-dione in dextran sulfate sodium-challenged mice compared with control mice. Immunohistochemical staining confirmed tryptamine-4,5-dione-positive staining at the myeloperoxidase accumulation site in dextran sulfate sodium-challenged mice colorectal tissue. The tryptamine-4,5-dione locus in the mice was partly matched with that of a specific marker for myeloperoxidase, halogenated tyrosine. Overall, the results possibly indicate that tryptamine-4,5-dione is generated by neutrophil myeloperoxidase in inflammatory tissue and may contribute to the development of inflammatory bowel disease.

6.
J Clin Biochem Nutr ; 67(3): 283-289, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33293769

RESUMO

Vascular calcification progresses under hyperphosphatemia, and represents a risk factor for cardiovascular disease in chronic kidney disease (CKD) patients. We recently indicated that phosphorus (P) fluctuations also exacerbated vascular calcification in early-stage CKD rats. Dietary fiber intake is reportedly associated with cardiovascular risk. This study investigated the effects of dietary fiber on vascular calcification by repeated P fluctuations in early-stage CKD rats. Unilateral nephrectomy rats were used as an early-stage CKD model. For 36 days, a P fluctuation (LH) group was fed low-P (0.02% P) and high-P (1.2% P) diets alternating every 2 days, and a P fluctuation with dietary fiber intake (LH + F) group was fed low-P and high-P diets containing dietary fiber alternating every 2 days. The effect on vascular calcification was measured calcium content. Effects on uremic toxin were measured levels of indoxyl sulfate (IS) and investigated gut microbiota. The LH + F group showed significantly reduced vessel calcium content compared to the LH group. Further, dietary fiber inhibited increases in blood levels of IS after intake of high-P diet, and decreased uremic toxin-producing intestinal bacteria. Dietary fiber may help suppress progression of vascular calcification due to repeated P fluctuations in early-stage CKD rats by decreasing uremic toxin-producing intestinal bacteria.

7.
Planta ; 251(1): 29, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31802247

RESUMO

MAIN CONCLUSION: A novel allele of the sugary-1 rice mutant was isolated. The single amino acid change led to isoamylase activity reduction and accumulation of high-molecular-weight phytoglycogen in seeds. A new sugary rice variety with an improved seed appearance has been isolated and designated Hemisugary1. This mutant, which was derived from Japonica-type cultivar Tsugaruroman treated with sodium azide, has about half the isoamylase activity of seeds in the original Tsugaruroman. The mutant also accumulates significant phytoglycogen, albeit approximately 40% of the total phytoglycogen in the existing sugary cultivar Ayunohikari which is defective in its most isoamylase activity. The site of mutation was identified using a re-sequence of the whole genome and a cleaved amplified polymorphic sequence (CAPS) marker. The hemisugary phenotypes of the F2 progeny were entirely consistent with the results of genotyping using the CAPS marker. Segregation analysis of the F2 population showed that the hemisugary phenotype was controlled by a single recessive gene, which was produced by a G → A single nucleotide polymorphism in the sugary-1 gene, resulting in a missense mutation from glycine to aspartic acid at amino acid position 333. Zymogram showed that this amino acid replacement resulted in a decrease in isoamylase activity with a concomitant reduction in the formation of isoamylase complexes. Phytoglycogen molecules from Hemisugary1 seeds were 3.5 times larger and contained more short glucan chains than did Ayunohikari seeds. Our data provide new insights into the relationship between isoamylase structure and phytoglycogen formation.


Assuntos
Alelos , Genes de Plantas , Mutação/genética , Oryza/genética , Açúcares/metabolismo , Sequência de Bases , Segregação de Cromossomos/genética , Glucanos/metabolismo , Glucose/metabolismo , Modelos Moleculares , Oryza/enzimologia , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Sementes/anatomia & histologia , Sementes/enzimologia , Solubilidade , Água/química
8.
Chem Res Toxicol ; 32(4): 638-644, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30735032

RESUMO

Benzyl isothiocyanate (BITC), a dietary isothiocyanate (ITC) derived from cruciferous vegetables, has anticancer properties. It is believed that the ITC moiety (-N═C═S) that reacts predominantly with thiol compounds plays a central role in triggering the activities resulting from these properties. Recent studies have demonstrated that ITCs also covalently modify amino moieties in a protein. In this study, we examined the chemical reaction between BITC and the aminophospholipid, phosphatidylethanolamine (PE), in the cell membrane or lipoprotein particle. To detect the BITC-modified PE, the bond between ethanolamine (EA) and phosphatidic acid in PE was cleaved using phospholipase D to form the BITC-EA adduct, which was then measured. BITC-EA was detected from the BITC-treated unilamellar liposome and low-density lipoprotein even with only a few micromoles of BITC treatment, suggesting that BITC might react with not only a thiol/amino group of a protein but also an amino moiety of an aminophospholipid. Moreover, after incorporating BITC-PE included in the liposomes into the cultured cells or after direct exposure of BITC to the cells, free BITC-EA was excreted and accumulated in the medium in a time-dependent manner. It indicates that an intracellular enzyme catalyzes the cleavage of BITC-PE to produce BITC-EA. Because the ITC-amine adduct is stable, the ITC-EA adduct could be a promising indicator of ITC exposure in vivo.


Assuntos
Etanolamina/metabolismo , Isotiocianatos/metabolismo , Fosfatidiletanolaminas/metabolismo , Animais , Etanolamina/análise , Isotiocianatos/análise , Lipossomos/química , Lipossomos/metabolismo , Camundongos , Estrutura Molecular , Fosfatidiletanolaminas/análise , Células RAW 264.7
9.
Arch Biochem Biophys ; 645: 126-136, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29574052

RESUMO

Quercetin is a major flavonoid, present as its glycosidic forms in plant foods. In this study, quercetin-3-glucoside (Q3G) was administered intraduodenally to thoracic lymph-cannulated rats, and its lymphatic transport was investigated. The resulting lymphatic and plasma metabolites were identified with LC-MS/MS and compared with those after administration of quercetin aglycone. The total concentration of quercetin metabolites in the lymph was about four times lower than that in the plasma, and quercetin and its methylated form isorhamnetin were detected as their glucuronides, sulfates and diglucuronides both in the lymph and the plasma after Q3G and quercetin administrations. The lymph levels of the glucuronides after Q3G administration were lower than those after quercetin administration, whereas those in the plasma showed the opposite pattern. Both the lymph and plasma levels of the sulfates after Q3G administration were lower than those after quercetin administration. Some of the intestinal metabolites like quercetin monoglucuronides were transported directly into the lymph and the hepatic metabolites like the diglucuronides were eventually transferred from the plasma into the lymph. These results indicate that the absorbed Q3G is partly transported into the intestinal lymph as quercetin metabolites. Deglycosylation in the enterocyte is also suggested to affect the subsequent metabolic pathways.


Assuntos
Intestinos , Iridoides/química , Linfa/efeitos dos fármacos , Linfa/metabolismo , Quercetina/análogos & derivados , Quercetina/metabolismo , Animais , Masculino , Quercetina/administração & dosagem , Quercetina/sangue , Quercetina/química , Quercetina/farmacologia , Ratos , Ratos Wistar
10.
J Clin Biochem Nutr ; 62(3): 213-220, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29892159

RESUMO

There are many chemically reactive compounds, including quinone, in living systems and also food. Even after the ingestion of food polyphenols, quinones derived from catechol moieties could form endogenously in the body. Dopaquinone, dopamine quinone, estrogen-derived quinones, tryptamine-4,5-dione, and ubiquinone are examples of an endogenous quinone. These indicate that quinone is ubiquitously formed or present in living systems and food. Quinones can induce a variety of hazardous effects and also could have beneficial physiological effects. This review focuses on the chemical reactivity of quinone toward a biomolecule and its biological action.

11.
Biosci Biotechnol Biochem ; 80(10): 2007-13, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27281652

RESUMO

Lipid peroxidation products react with cellular molecules, such as DNA bases, to form covalent adducts, which are associated with aging and disease processes. Since lipid peroxidation is a complex process and occurs in multiple stages, there might be yet unknown reaction pathways. Here, we analyzed comprehensively 2'-deoxyguanosine (dG) adducts with oxidized arachidonic acid using liquid chromatography-tandem mass spectrometry and found the formation of 7-(2-oxo-hexyl)-etheno-dG as one of the major unidentified adducts. The formation of this adduct was reproduced in the reaction of dG with 2-octenal and predominantly with 4-oxo-2-octenal (OOE). We also found that other 2-alkenals (with five or more carbons) generate corresponding 4-oxo-2-alkenal-type adducts. Importantly, it was found that transition metals enhanced the oxidation of C4-position of 2-octenal, leading to the formation of OOE-dG adduct. These findings demonstrated a new pathway for the formation of 4-oxo-2-alkenals during lipid peroxidation and might provide a mechanism for metal-catalyzed genotoxicity.


Assuntos
Aldeídos/química , Ácido Araquidônico/química , Cobre/química , Ferro/química , Peroxidação de Lipídeos , Mutagênicos/química , Aldeídos/metabolismo , Animais , Ácido Araquidônico/metabolismo , Catálise , Bovinos , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Mutagênicos/metabolismo , Oxirredução
12.
Biosci Biotechnol Biochem ; 80(2): 313-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26338495

RESUMO

Myeloperoxidase (MPO)-generated halogenating molecules, such as hypochlorous acid and hypobromous acid (HOBr), in inflammatory regions are postulated to contribute to disease progression. In this study, we showed that ergothioneine (EGT), derived from an edible mushroom, inhibited MPO activity as well as the formation of 8-bromo-2'-deoxyguanosine in vitro. The HOBr scavenging effect of EGT is higher than those of ascorbic acid and glutathione. We initially observed that the administration of Coprinus comatus, an edible mushroom containing a high amount of EGT, inhibited the UV-B-induced inflammatory responses and DNA halogenation, suggesting that EGT is a promising anti-inflammatory agent from mushrooms.


Assuntos
Agaricales/química , Anti-Inflamatórios/farmacologia , DNA/antagonistas & inibidores , Ergotioneína/farmacologia , Peroxidase/antagonistas & inibidores , Animais , Anti-Inflamatórios/isolamento & purificação , Ácido Ascórbico/farmacologia , Bromatos/antagonistas & inibidores , Bromatos/metabolismo , DNA/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/antagonistas & inibidores , Desoxiguanosina/biossíntese , Ergotioneína/isolamento & purificação , Glutationa/farmacologia , Halogenação/efeitos dos fármacos , Ácido Hipocloroso/antagonistas & inibidores , Ácido Hipocloroso/metabolismo , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Pelados , Peroxidase/metabolismo , Raios Ultravioleta/efeitos adversos
13.
J Clin Biochem Nutr ; 58(2): 99-104, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27013775

RESUMO

Myeloperoxidase is an inflammatory enzyme that generates reactive hypochlorous acid in the presence of hydrogen peroxide and chloride ion. However, this enzyme also uses bromide ion or thiocyanate as a substrate to form hypobromous or hypothiocyanous acid, respectively. These species play important roles in host defense against the invasion of microorganisms. In contrast, these enzyme products modify biomolecules in hosts during excess inflammation, indicating that the action of myeloperoxidase is both beneficial and harmful. Myeloperoxidase uses other endogenous compounds, such as serotonin, urate, and l-tyrosine, as substrates. This broad-range specificity may have some biological implications. Target molecules of this enzyme and its products vary, including low-molecular weight thiols, proteins, nucleic acids, and lipids. The modified products represent biomarkers of myeloperoxidase action. Moderate inhibition of this enzyme might be critical for the prevention/modulation of excess, uncontrolled inflammatory events. Some phytochemicals inhibit myeloperoxidase, which might explain the reductive effect caused by the intake of vegetables and fruits on cardiovascular diseases.

14.
Arch Biochem Biophys ; 586: 45-50, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26456401

RESUMO

At the sites of inflammation, hypohalous acids, such as hypochlorous acid and hypobromous acid (HOBr), are produced by myeloperoxidase. These hypohalous acids rapidly react with the primary amino groups to produce haloamines, which are relatively stable and can diffuse long distances and cross the plasma membrane. In this study, we examined the effects of taurine, the most abundant free amino acid in the leukocyte cytosol, on the hypohalous acid-dependent formation of 8-chloro-2'-deoxyguanosine (8-CldG) and 8-bromo-2'-deoxyguanosine (8-BrdG). The reaction of taurine with HOBr yielded taurine bromamine, which is the most stable among other bromamines of amino acids. Taurine also enhanced the bromination of only dG among the four 2'-deoxynucleosides, whereas it inhibited the 8-CldG formation. The specificity of taurine for the enhanced formation of halogenated dG is completely different from that of nicotine, an enhancer of chlorination. The amount of dibrominated taurine (taurine dibromamine) closely correlated with the formation of 8-BrdG, suggesting that taurine dibromamine might be a plausible mediator for the dG bromination in vivo.


Assuntos
Desoxiguanosina/análogos & derivados , Taurina/metabolismo , Animais , Bromatos/química , Bromatos/metabolismo , Cromatografia Líquida de Alta Pressão , Desoxiguanosina/biossíntese , Desoxiguanosina/química , Halogenação , Humanos , Ácido Hipocloroso/química , Ácido Hipocloroso/metabolismo , Técnicas In Vitro , Inflamação/metabolismo , Peroxidase/metabolismo , Espectrometria de Massas em Tandem , Taurina/análogos & derivados , Taurina/química
15.
Subcell Biochem ; 77: 21-39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24374915

RESUMO

Lipid peroxidation is an important biological reaction. In particular, polyunsaturated fatty acid (PUFA) can be oxidized easily. Peroxidized lipids often react with other amines accompanied by the formation of various covalent adducts. Novel amide-type lipid-lysine adducts have been identified from an in vitro reaction mixture of lipid hydroperoxide with a protein, biological tissues exposed to conditions of oxidative stress and human urine from a healthy person. In this chapter, the current knowledge of amide type adducts is reviewed with a focus on the evaluation of functional foods and diseases with a history of discovery of hexanoyl-lysine (HEL). Although there is extensive research on HEL and other amide-type adducts, the mechanism of generation of the amide bond remains unclear. We have found that the decomposed aldehyde plus peroxide combined with a lysine moiety does not fully explain the formation of the amide-type lipid-lysine adduct that is generated by lipid hydroperoxide. Singlet oxygen or an excited state of the ketone generated from the lipid hydroperoxide may also contribute to the formation of the amide linkage. The amide-adducts may prove useful not only for the detection of oxidative stress induced by disease but also for the estimation of damage caused by an excess intake of PUFA.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Peroxidação de Lipídeos/genética , Peróxidos Lipídicos/metabolismo , Estresse Oxidativo , Ácidos Graxos Insaturados/química , Hexanóis/química , Humanos , Peróxidos Lipídicos/química , Lisina/química , Lisina/metabolismo , Oxirredução , Proteínas/química , Proteínas/metabolismo , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo
16.
Subcell Biochem ; 77: 127-36, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24374924

RESUMO

Nervous system controls all the organs in the living like a symphony. In this chapter, the mechanism of neuronal death in aged is discussed in relation to oxidative stress. Polyunsaturated fatty acid (PUFA) is known to be rich in the membranous component of the neurons and plays an important role in maintaining the neuronal functions. Recent reports revealed that oxidation of omega-3 and omega-6 PUFAs, such as docosahexaenoic acid (DHA) and arachidonic acid (ARA), are potent antioxidant but simultaneously, their oxidation products are potentially toxic. In this chapter, the existence of early oxidation products of PUFA is examined in the samples from neurodegenerative disorders and the cellular model. Accumulation of proteins with abnormal conformation is suggested to induce neuronal death by disturbance of proteolysis and mitochondrial function. The role of lipid peroxide and lipid-derived aldehyde adduct proteins is discussed in relation to brain ageing and age-related neurodegeneration.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Peróxidos Lipídicos/metabolismo , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo , Encéfalo/metabolismo , Encéfalo/patologia , Ácidos Graxos Ômega-3/metabolismo , Humanos , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , alfa-Sinucleína/metabolismo
17.
Subcell Biochem ; 77: 61-72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24374918

RESUMO

Published evidences indicate that reactive oxygen species (ROS) can induce lipid peroxidation, which plays important role in the pathophysiology of numerous diseases including atherosclerosis, diabetes, cancer and aging process. Monitoring of oxidative modification or oxidative damages of biomolecules may therefore be essential for the understanding of aging, and age-related diseases. N-epsilon-Hexanoyl-lysine (HEL) is a novel lipid peroxidation biomarker which is derived from the oxidation of omega-6 unsaturated fatty acid. In this chapter, development of HEL ELISA and its applications are reported. Assay range of HEL ELISA was 2-700 nmol/L, and showed good linearity and reproducibility. Accuracy of this assay was validated by recovery test and absorption test. HEL concentration in human urine was 22.9 ± 15.4 nmol/L and it was suggested that HEL exists as low molecular substances, in a free or in the peptide-attached form. In contrast with the urine sample, serum HEL was suggested to exist in the protein-attached form, and hydrolysis by protease might be essential for the accurate measurement of HEL in protein containing samples such as serum and cultured cells. By sample pretreatment with proteases, HEL was successfully detected in oxidized LDL, oxidized serum, and rat serum. In conclusion, HEL ELISA can be applied to measure urine, serum, and other biological samples independent of the animal species, and may be useful for the assessment of omega-6 PUFA oxidation in the living bodies.


Assuntos
Ácidos Graxos Ômega-6/química , Hexanóis/química , Peroxidação de Lipídeos , Lisina/química , Animais , Biomarcadores/química , Biomarcadores/metabolismo , Ácidos Graxos Ômega-6/urina , Hexanóis/urina , Humanos , Lipídeos/urina , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Lisina/urina , Oxirredução , Estresse Oxidativo , Ratos
18.
Pharm Biol ; 52(6): 782-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24392718

RESUMO

CONTEXT: Blackcurrant (Ribes nigrum L.) is a classical fruit that has long been used to make juice, liqueur and sometimes medicines in Europe. The beneficial effects of blackcurrant, which are inhibition of lipopolysaccharide-stimulated inflammatory, anticarcinogenesis and other health effects, have been reported. OBJECTIVE: Previously, we reported the antimutagenic activities of blackcurrant using a yeast gene mutation assay. In this study, we investigated whether this antimutagenicity of blackcurrant was confirmed in human cells. MATERIALS AND METHODS: We prepared four types of aqueous blackcurrant extracts (BCE) from mature and premature with or without heat treatment by microwave. Antioxidant activities of BCE were measured by the DPPH radical scavenger assay. In the DPPH radical scavenger assay, the maximum concentration of BCE was 1.6 mg/reaction. We investigated the antigenotoxic activities of BCE by the comet assay and micronucleus test using the human lymphoblastoid cell line TK6. In the comet assay, TK6 was treated with 300 µM H2O2 without or with BCE at concentrations of 0.5, 1.0, 2.0 and 3.0 mg/mL. In the micronucleus test, TK6 was treated with 1 mg/mL BCE without or with H2O2. RESULTS: All BCEs exhibited more than 90% of inhibition rates of DPPH radicals at the maximum concentration of BCE. DNA damage and micronuclei induced by H2O2 significantly decreased in the each BCE-treated condition. CONCLUSION: The results suggest that BCE treatment can reduce the genomic instability induced by H2O2 in human cells. We consider that these antigenotoxic effects are related to polyphenols, l-ascorbic acid and other antioxidant compounds.


Assuntos
Antioxidantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Extratos Vegetais/farmacologia , Ribes , Antioxidantes/isolamento & purificação , Linhagem Celular , Ensaio Cometa/métodos , Dano ao DNA/fisiologia , Humanos , Extratos Vegetais/isolamento & purificação
20.
Free Radic Biol Med ; 206: 74-82, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37391098

RESUMO

The SARS-CoV-2 main protease is an essential molecule for viral replication and is often targeted by medications to treat the infection. In this study, we investigated the possible inhibitory action of endogenous quinones on the enzyme. Recombinant SARS-CoV-2 main protease was exposed to tryptamine-4,5-dione (TD) or quinone from 5-hydroxyindoleacetic acid (Q5HIAA). As a result, the protease activity was considerably decreased in a dose-dependent manner. The IC50 values of the quinones toward the enzyme were approximately 0.28 µM (TD) and 0.49 µM (Q5HIAA). Blot analyses using specific antibodies to quinone-modified proteins revealed that quinones were adducted to the enzyme at concentrations as low as 0.12 µM. Intact mass analyses showed that one or two quinone molecules were covalently adducted onto the main protease. Chymotrypsin-digested main protease analyses revealed that the quinones bind to thiol residues at the enzyme's active site. When TD or Q5HIAA were exposed to cultured cells expressing the viral enzyme, quinone-modified enzyme was identified in the cell lysate, suggesting that even extracellularly generated quinones could react with the viral enzyme expressed in an infected cell. Thus, these endogenous quinones could act as inhibitors of the viral enzyme.


Assuntos
COVID-19 , Quinonas , Humanos , Quinonas/química , Serotonina/farmacologia , SARS-CoV-2 , Proteases 3C de Coronavírus , Células Cultivadas , Inibidores de Proteases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA