Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
RNA ; 28(4): 508-522, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983822

RESUMO

Influenza A kills hundreds of thousands of people globally every year and has the potential to generate more severe pandemics. Influenza A's RNA genome and transcriptome provide many potential therapeutic targets. Here, nuclear magnetic resonance (NMR) experiments suggest that one such target could be a hairpin loop of 8 nucleotides in a pseudoknot that sequesters a 3' splice site in canonical pairs until a conformational change releases it into a dynamic 2 × 2-nt internal loop. NMR experiments reveal that the hairpin loop is dynamic and able to bind oligonucleotides as short as pentamers. A 3D NMR structure of the complex contains 4 and likely 5 bp between pentamer and loop. Moreover, a hairpin sequence was discovered that mimics the equilibrium of the influenza hairpin between its structure in the pseudoknot and upon release of the splice site. Oligonucleotide binding shifts the equilibrium completely to the hairpin secondary structure required for pseudoknot folding. The results suggest this hairpin can be used to screen for compounds that stabilize the pseudoknot and potentially reduce splicing.


Assuntos
Influenza Humana , Sítios de Splice de RNA , Sequência de Bases , Humanos , Influenza Humana/genética , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico , Oligonucleotídeos , Sítios de Splice de RNA/genética , RNA Mensageiro/metabolismo
2.
Biochemistry ; 56(29): 3733-3744, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28700212

RESUMO

The prediction of RNA three-dimensional structure from sequence alone has been a long-standing goal. High-resolution, experimentally determined structures of simple noncanonical pairings and motifs are critical to the development of prediction programs. Here, we present the nuclear magnetic resonance structure of the (5'CCAGAAACGGAUGGA)2 duplex, which contains an 8 × 8 nucleotide internal loop flanked by three Watson-Crick pairs on each side. The loop is comprised of a central 5'AC/3'CA nearest neighbor flanked by two 3RRs motifs, a known stable motif consisting of three consecutive sheared GA pairs. Hydrogen bonding patterns between base pairs in the loop, the all-atom root-mean-square deviation for the loop, and the deformation index were used to compare the structure to automated predictions by MC-sym, RNA FARFAR, and RNAComposer.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Motivos de Nucleotídeos , RNA/química , Análise de Sequência de RNA/métodos , Software , Valor Preditivo dos Testes
3.
Biochemistry ; 54(22): 3413-5, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-25996464

RESUMO

Influenza A is a negative-sense RNA virus with an eight-segment genome. Some segments encode more than one polypeptide product, but how the virus accesses alternate internal open reading frames (ORFs) is not completely understood. In segment 2, ribosomal scanning produces two internal ORFs, PB1-F2 and N40. Here, chemical mapping reveals a Mg(2+)-dependent pseudoknot structure that includes the PB1-F2 and N40 start codons. The results suggest that interactions of the ribosome with the pseudoknot may affect the level of translation for PB1-F2 and N40.


Assuntos
Códon de Iniciação/metabolismo , Vírus da Influenza A/metabolismo , Conformação de Ácido Nucleico , Fases de Leitura Aberta/fisiologia , RNA Viral/metabolismo , Proteínas Virais/metabolismo , Códon de Iniciação/genética , Vírus da Influenza A/genética , Magnésio/metabolismo , RNA Viral/genética , Proteínas Virais/genética
4.
Nucleic Acids Res ; 37(18): e121, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19596816

RESUMO

RNA secondary structure prediction using free energy minimization is one method to gain an approximation of structure. Constraints generated by enzymatic mapping or chemical modification can improve the accuracy of secondary structure prediction. We report a facile method that identifies single-stranded regions in RNA using short, randomized DNA oligonucleotides and RNase H cleavage. These regions are then used as constraints in secondary structure prediction. This method was used to improve the secondary structure prediction of Escherichia coli 5S rRNA. The lowest free energy structure without constraints has only 27% of the base pairs present in the phylogenetic structure. The addition of constraints from RNase H cleavage improves the prediction to 100% of base pairs. The same method was used to generate secondary structure constraints for yeast tRNA(Phe), which is accurately predicted in the absence of constraints (95%). Although RNase H mapping does not improve secondary structure prediction, it does eliminate all other suboptimal structures predicted within 10% of the lowest free energy structure. The method is advantageous over other single-stranded nucleases since RNase H is functional in physiological conditions. Moreover, it can be used for any RNA to identify accessible binding sites for oligonucleotides or small molecules.


Assuntos
Sondas de Oligonucleotídeos , RNA/química , Ribonuclease H , Biblioteca Gênica , Conformação de Ácido Nucleico , RNA Ribossômico 5S/química , RNA de Transferência de Fenilalanina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA