Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 633(8031): 848-855, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39143210

RESUMO

Bread wheat (Triticum aestivum) is a globally dominant crop and major source of calories and proteins for the human diet. Compared with its wild ancestors, modern bread wheat shows lower genetic diversity, caused by polyploidisation, domestication and breeding bottlenecks1,2. Wild wheat relatives represent genetic reservoirs, and harbour diversity and beneficial alleles that have not been incorporated into bread wheat. Here we establish and analyse extensive genome resources for Tausch's goatgrass (Aegilops tauschii), the donor of the bread wheat D genome. Our analysis of 46 Ae. tauschii genomes enabled us to clone a disease resistance gene and perform haplotype analysis across a complex disease resistance locus, allowing us to discern alleles from paralogous gene copies. We also reveal the complex genetic composition and history of the bread wheat D genome, which involves contributions from genetically and geographically discrete Ae. tauschii subpopulations. Together, our results reveal the complex history of the bread wheat D genome and demonstrate the potential of wild relatives in crop improvement.


Assuntos
Aegilops , Alelos , Pão , Evolução Molecular , Genoma de Planta , Haplótipos , Triticum , Triticum/genética , Genoma de Planta/genética , Haplótipos/genética , Aegilops/genética , Resistência à Doença/genética , Filogenia , Variação Genética/genética , Domesticação , Genes de Plantas/genética , Poliploidia , Produtos Agrícolas/genética
2.
Plant Cell Rep ; 43(7): 166, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862789

RESUMO

KEY MESSAGE: Unraveling genetic markers for MYMIV resistance in urdbean, with 8 high-confidence marker-trait associations identified across diverse environments, provides crucial insights for combating MYMIV disease, informing future breeding strategies. Globally, yellow mosaic disease (YMD) causes significant yield losses, reaching up to 100% in favorable environments within major urdbean cultivating regions. The introgression of genomic regions conferring resistance into urdbean cultivars is crucial for combating YMD, including resistance against mungbean yellow mosaic India virus (MYMIV). To uncover the genetic basis of MYMIV resistance, we conducted a genome-wide association study (GWAS) using three multi-locus models in 100 diverse urdbean genotypes cultivated across six individual and two combined environments. Leveraging 4538 high-quality single nucleotide polymorphism (SNP) markers, we identified 28 unique significant marker-trait associations (MTAs) for MYMIV resistance, with 8 MTAs considered of high confidence due to detection across multiple GWAS models and/or environments. Notably, 4 out of 28 MTAs were found in proximity to previously reported genomic regions associated with MYMIV resistance in urdbean and mungbean, strengthening our findings and indicating consistent genomic regions for MYMIV resistance. Among the eight highly significant MTAs, one localized on chromosome 6 adjacent to previously identified quantitative trait loci for MYMIV resistance, while the remaining seven were novel. These MTAs contain several genes implicated in disease resistance, including four common ones consistently found across all eight MTAs: receptor-like serine-threonine kinases, E3 ubiquitin-protein ligase, pentatricopeptide repeat, and ankyrin repeats. Previous studies have linked these genes to defense against viral infections across different crops, suggesting their potential for further basic research involving cloning and utilization in breeding programs. This study represents the first GWAS investigation aimed at identifying resistance against MYMIV in urdbean germplasm.


Assuntos
Begomovirus , Resistência à Doença , Estudo de Associação Genômica Ampla , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Vigna , Vigna/genética , Vigna/virologia , Resistência à Doença/genética , Begomovirus/fisiologia , Begomovirus/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Genoma de Planta/genética , Genótipo , Marcadores Genéticos
3.
Physiol Plant ; 175(6): e14069, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148247

RESUMO

Wheat is one of the most important cereal crops in the world. Cold stress is a major constraint in production of wheat grown in cold climate regions. In this study, we conducted a comprehensive assessment of cold stress tolerance in wheat genotypes through field screening, cell membrane stability through electrolyte leakage assay and biochemical profiling. A core set comprising 4560 genotypes was evaluated for two years (2021-2022), revealing substantial genetic variation for cold stress tolerance. Most genotypes exhibited moderate tolerance, while a smaller proportion showed susceptibility to cold stress. Based on the cold screening data in the field, a mini-core set of 350 genotypes was selected for membrane stability analysis using electrical conductivity assays. Significant differences were observed in membrane stability among the genotypes, indicating the presence of genetic variation for this trait. Furthermore, a mini-core set was narrowed down to 50 diverse candidate genotypes that were subsequently profiled for various biochemicals, including reactive oxygen species (ROS) like lipid peroxidation (MDA) and hydrogen peroxide (H2 02 ), osmoprotectant (proline) and enzymatic antioxidants including ascorbate peroxidase (APX), superoxide dismutase (SOD), guaiacol peroxidase (GPX), and catalase (CAT). Correlation analysis of the biochemicals revealed negative associations between antioxidants and reactive oxygen species (ROS), highlighting their role in mitigating oxidative damage under cold stress. This study enhances our understanding of the physiological and biochemical mechanisms underlying cold stress tolerance in wheat. The identified genotypes with superior cold stress tolerance can serve as valuable genetic resources for wheat breeding.


Assuntos
Resposta ao Choque Frio , Triticum , Espécies Reativas de Oxigênio/metabolismo , Triticum/metabolismo , Resposta ao Choque Frio/genética , Himalaia , Melhoramento Vegetal , Catalase/genética , Catalase/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Genótipo , Superóxido Dismutase/metabolismo
4.
Plant Cell Rep ; 42(9): 1453-1472, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37338572

RESUMO

KEY MESSAGE: Genome-wide association study identified 205 significant marker-trait associations for chlorophyll fluorescence parameters in wheat. Candidate gene mining, in silico expression, and promoter analyses revealed the potential candidate genes associated with the studied parameters. The present study investigated the effect of varied sowing conditions (viz., early, timely, and late) on different chlorophyll fluorescence parameters in diverse wheat germplasm set comprising of 198 lines over two cropping seasons (2020-2021 and 2021-2022). Further, a genome-wide association study was conducted to identify potential genomic regions associated with these parameters. The results revealed significant impacts of sowing conditions on all fluorescence parameters, with the maximum and minimum effects on FI (26.64%) and FV/FM (2.12%), respectively. Among the 205 marker-trait associations (MTAs) identified, 11 high-confidence MTAs were chosen, exhibiting substantial effects on multiple fluorescence parameters, and each explaining more than 10% of the phenotypic variation. Through gene mining of genomic regions encompassing high-confidence MTAs, we identified a total of 626 unique gene models. In silico expression analysis revealed 42 genes with an expression value exceeding 2 TPM. Among them, 10 genes were identified as potential candidate genes with functional relevance to enhanced photosynthetic efficiency. These genes mainly encoded for the following important proteins/products-ankyrin repeat protein, 2Fe-2S ferredoxin-type iron-sulfur-binding domain, NADH-ubiquinone reductase complex-1 MLRQ subunit, oxidoreductase FAD/NAD(P)-binding, photosystem-I PsaF, and protein kinases. Promoter analysis revealed the presence of light-responsive (viz., GT1-motif, TCCC-motif, I-box, GT1-motif, TCT-motif, and SP-1) and stress-responsive (viz., ABRE, AuxRR-core, GARE-motif, and ARE) cis-regulatory elements, which may be involved in the regulation of identified putative candidate genes. Findings from this study could directly help wheat breeders in selecting lines with favorable alleles for chlorophyll fluorescence, while the identified markers will facilitate marker-assisted selection of potential genomic regions for improved photosynthesis.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Fenótipo , Genômica , Clorofila
5.
Plant Dis ; 107(6): 1847-1860, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37311158

RESUMO

Stem rust is one of the major diseases threatening wheat production globally. To identify novel resistance quantitative trait loci (QTLs), we performed 35K Axiom Array SNP genotyping assays on an association mapping panel of 400 germplasm accessions, including Indian landraces, in conjunction with phenotyping for stem rust at seedling and adult plant stages. Association analyses using three genome wide association study (GWAS) models (CMLM, MLMM, and FarmCPU) revealed 20 reliable QTLs for seedling and adult plant resistance. Among these 20 QTLs, five QTLs were found consistent with three models, i.e., four QTLs on chromosome 2AL, 2BL, 2DL, and 3BL for seedling resistance and one QTL on chromosome 7DS for adult plant resistance. Further, we identified a total of 21 potential candidate genes underlying QTLs using gene ontology analysis, including a leucine rich repeat receptor (LRR) and P-loop nucleoside triphosphate hydrolase, which have a role in pathogen recognition and disease resistance. Furthermore, four QTLs (Qsr.nbpgr-3B_11, QSr.nbpgr-6AS_11, QSr.nbpgr-2AL_117-6, and QSr.nbpgr-7BS_APR) were validated through KASP located on chromosomes 3B, 6A, 2A, and 7B. Out of these QTLs, QSr.nbpgr-7BS_APR was identified as a novel QTL for stem rust resistance which has been found effective in both seedling as well as the adult plant stages. Identified novel genomic regions and validated QTLs have the potential to be deployed in wheat improvement programs to develop disease resistant varieties for stem rust and can diversify the genetic basis of resistance.


Assuntos
Basidiomycota , Plântula , Mapeamento Cromossômico , Plântula/genética , Triticum/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Basidiomycota/genética , Resistência à Doença/genética , Doenças das Plantas/genética
6.
BMC Plant Biol ; 22(1): 618, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36577935

RESUMO

BACKGROUND: During the last few decades, the diverse sources of resistance, several genes and QTLs for spot blotch resistance have been identified. However, a large set of germplasm lines are still unexplored that have the potential to develop highly resistant wheat cultivars for the target environments. Therefore, the identification of new sources of resistance to spot blotch is essential for breeding programmes to develop spot blotch resistant cultivars and sustain wheat production. The association mapping panel of 294 diverse bread wheat accessions was used to explore new sources of spot blotch disease resistance and to identify genomic regions using genome wide association analysis (GWAS). The genotypes were tested in replicated trials for spot blotch disease at three major hot spots in India (Varanasi in UP, Pusa in Bihar, and Cooch Behar in West Bengal). The area under the disease progress curve (AUDPC) was calculated to assess the level of resistance in each genotype. RESULTS: A total of 19 highly and 76 moderately resistant lines were identified. Three accessions (EC664204, IC534306 and IC535188) were nearly immune to spot blotch disease. The genotyping of all accessions resulted in a total of 16,787 high-quality polymorphic SNPs. The GWAS was performed using a Compressed Mixed Linear Model (CMLM) and a Mixed Linear Model (MLM). A total of seven significant MTAs, common in both the models and consistent across the environment, were further validated to develop KASP markers. Four MTAs (AX-94710084, AX-94865722, AX-95135556, and AX-94529408) on three chromosomes (2AL, 2BL, and 3BL) have been successfully validated through the KASP marker. CONCLUSIONS: The new source of resistance was identified from unexplored germplasm lines. The genomic regions identified through GWAS were validated through KASP markers. The marker information and the highly resistant sources are valuable resources to rapidly develop immune or near immune wheat varieties.


Assuntos
Ascomicetos , Resistência à Doença , Resistência à Doença/genética , Triticum/genética , Estudo de Associação Genômica Ampla , Alelos , Ascomicetos/genética , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética , Doenças das Plantas/genética
7.
Biochem Soc Trans ; 50(6): 1595-1605, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36421737

RESUMO

Chemotaxis signaling pathways enable bacteria to sense and respond to their chemical environment and, in some species, are critical for lifestyle processes such as biofilm formation and pathogenesis. The signal transduction underlying chemotaxis behavior is mediated by large, highly ordered protein complexes known as chemosensory arrays. For nearly two decades, cryo-electron tomography (cryoET) has been used to image chemosensory arrays, providing an increasingly detailed understanding of their structure and function. In this mini-review, we provide an overview of the use of cryoET to study chemosensory arrays, including imaging strategies, key results, and outstanding questions. We further discuss the application of molecular modeling and simulation techniques to complement structure determination efforts and provide insight into signaling mechanisms. We close the review with a brief outlook, highlighting promising future directions for the field.


Assuntos
Quimiotaxia , Escherichia coli , Quimiotaxia/fisiologia , Escherichia coli/metabolismo , Proteínas Quimiotáticas Aceptoras de Metil/química , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Tomografia com Microscopia Eletrônica , Histidina Quinase , Transdução de Sinais , Proteínas de Bactérias/metabolismo
8.
Theor Appl Genet ; 135(12): 4495-4506, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271056

RESUMO

KEY MESSAGE: Here, we report identification of a large effect QTL conferring Mungbean yellow mosaic India virus resistance introgressed from ricebean in blackgram variety Mash114. The tightly linked KASP markers would assist in marker-assisted-transfer of this region into Vigna species infected by MYMIV. Until recently, precise location of genes and marker-assisted selection was long thought in legumes such as blackgram due to lack of dense molecular maps. However, advances in next-generation sequencing based on high-throughput genotyping technologies such as QTL-seq have revolutionized trait mapping in marker-orphan crops. Using QTL-seq approach, we have identified a large-effect QTL for resistance to Mungbean yellow mosaic India virus (MYMIV) in blackgram variety Mash114. MYMIV is devastating disease responsible for huge yield losses in blackgram, greengram and other legumes. Mash114 showed consistent and high level of resistance to MYMIV since last nine years. Whole genome re-sequencing of MYMIV-resistant and susceptible bulks derived from RILs of cross KUG253 X Mash114 identified a large-effect QTL (qMYMIV6.1.1) spanning 3.4 Mb on chromosome 6 explaining 70% of total phenotypic variation. This region was further identified as an inter-specific introgression from ricebean. Linkage mapping using KASP markers developed from potent candidate genes involved in virus resistance identified the 500 kb genomic region equaling 1.9 cM on genetic map linked with MYMIV. The three KASP markers closely associated with MYMIV originated from serine threonine kinase, UBE2D2 and BAK1/BRI1-ASSOCIATED RECEPTOR KINASE genes. These KASPs can be used for marker-assisted transfer of introgressed segment into suitable backgrounds of Vigna species.


Assuntos
Begomovirus , Fabaceae , Vigna , Vigna/genética , Doenças das Plantas/genética , Fabaceae/genética
9.
Heredity (Edinb) ; 128(6): 531-541, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35568742

RESUMO

Introgression of genes from related species can be a powerful way to genetically improve crop yields, but selection for one trait can come at the cost to others. Wheat varieties with translocation of the short arm of chromosome 1 from the B genome of wheat (1BS) with the short arm of chromosome 1 from rye (1RS) are popular globally for their positive effect on yield and stress resistance. Unfortunately, this translocation (1BL.1RS) is also associated with poor bread making quality, mainly due to the presence of Sec-1 on its proximal end, encoding secalin proteins, and the absence of Glu-B3/Gli-B1-linked loci on its distal end, encoding low molecular weight glutenin subunits (LMW-GS). The present study aims to replace these two important loci on the 1RS arm with the wheat 1BS loci, in two popular Indian wheat varieties, PBW550 and DBW17, to improve their bread-making quality. Two donor lines in the cultivar Pavon background with absence of the Sec-1 locus and presence of the Glu-B3/Gli-B1 locus, respectively, were crossed and backcrossed with these two selected wheat varieties. In the advancing generations, marker assisted foreground selection was done for Sec-1- and Glu-B3/Gli-B1+ loci while recurrent parent recovery was done with the help of SSR markers. BC2F5 and BC2F6 near isosgenic lines (NILs) with absence of Sec-1 and presence of Glu-B3/Gli-B1 loci were evaluated for two years in replicated yield trials. As a result of this selection, thirty promising lines were generated that demonstrated improved bread making quality but also balanced with improved yield-related traits compared to the parental strains. The study demonstrates the benefits of using marker-assisted selection to replace a few loci with negative effects within larger alien translocations for crop improvement.


Assuntos
Pão , Triticum , Alelos , Secale/genética , Translocação Genética , Triticum/genética
10.
Mol Breed ; 42(11): 67, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37313474

RESUMO

Colored wheat has piqued the interest of breeders and consumers alike. The chromosomal segment from 7E of Thinopyrum ponticum, which carries a leaf rust resistant gene, Lr19, has been rarely employed in wheat breeding operations due to its association with the Y gene, which gives a yellow tint to the flour. By prioritizing nutritional content over color preferences, consumer acceptance has undergone a paradigm change. Through marker-assisted backcross breeding, we introduced an alien segment harboring the Y (PsyE1) gene into a high yielding commercial bread wheat (HD 2967) background to generate rust resistant carotenoid biofortified bread wheat. Agro-morphological characterization was also performed on a subset of developed 70 lines having enhanced grain carotene content. In the introgression lines, carotenoid profiling using HPLC analysis demonstrated a considerable increase in ß-carotene levels (up to 12 ppm). Thus, the developed germplasm caters the threat to nutritional security and can be utilized to produce carotenoid fortified wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01338-0.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA