Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 131(1): 42-58, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35611698

RESUMO

BACKGROUND: A significant burden of atherosclerotic disease is driven by inflammation. Recently, microRNAs (miRNAs) have emerged as important factors driving and protecting from atherosclerosis. miR-223 regulates cholesterol metabolism and inflammation via targeting both cholesterol biosynthesis pathway and NFkB signaling pathways; however, its role in atherosclerosis has not been investigated. We hypothesize that miR-223 globally regulates core inflammatory pathways in macrophages in response to inflammatory and atherogenic stimuli thus limiting the progression of atherosclerosis. METHODS AND RESULTS: Loss of miR-223 in macrophages decreases Abca1 gene and protein expression as well as cholesterol efflux to apoA1 (Apolipoprotein A1) and enhances proinflammatory gene expression. In contrast, overexpression of miR-223 promotes the efflux of cholesterol and macrophage polarization toward an anti-inflammatory phenotype. These beneficial effects of miR-223 are dependent on its target gene, the transcription factor Sp3. Consistent with the antiatherogenic effects of miR-223 in vitro, mice receiving miR223-/- bone marrow exhibit increased plaque size, lipid content, and circulating inflammatory cytokines (ie, IL-1ß). Deficiency of miR-223 in bone marrow-derived cells also results in an increase in circulating pro-atherogenic cells (total monocytes and neutrophils) compared with control mice. Furthermore, the expression of miR-223 target gene (Sp3) and pro-inflammatory marker (Il-6) are enhanced whereas the expression of Abca1 and anti-inflammatory marker (Retnla) are reduced in aortic arches from mice lacking miR-223 in bone marrow-derived cells. In mice fed a high-cholesterol diet and in humans with unstable carotid atherosclerosis, the expression of miR-223 is increased. To further understand the molecular mechanisms underlying the effect of miR-223 on atherosclerosis in vivo, we characterized global RNA translation profile of macrophages isolated from mice receiving wild-type or miR223-/- bone marrow. Using ribosome profiling, we reveal a notable upregulation of inflammatory signaling and lipid metabolism at the translation level but less significant at the transcription level. Analysis of upregulated genes at the translation level reveal an enrichment of miR-223-binding sites, confirming that miR-223 exerts significant changes in target genes in atherogenic macrophages via altering their translation. CONCLUSIONS: Our study demonstrates that miR-223 can protect against atherosclerosis by acting as a global regulator of RNA translation of cholesterol efflux and inflammation pathways.


Assuntos
Aterosclerose , Macrófagos , MicroRNAs , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Inflamação/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo
2.
Bioinformatics ; 38(13): 3407-3414, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35579340

RESUMO

MOTIVATION: A major challenge in cancer genomics is to distinguish the driver mutations that are causally linked to cancer from passenger mutations that do not contribute to cancer development. The majority of existing methods provide a single driver gene list for the entire cohort of patients. However, since mutation profiles of patients from the same cancer type show a high degree of heterogeneity, a more ideal approach is to identify patient-specific drivers. RESULTS: We propose a novel method that integrates genomic data, biological pathways and protein connectivity information for personalized identification of driver genes. The method is formulated on a personalized bipartite graph for each patient. Our approach provides a personalized ranking of the mutated genes of a patient based on the sum of weighted 'pairwise pathway coverage' scores across all the samples, where appropriate pairwise patient similarity scores are used as weights to normalize these coverage scores. We compare our method against five state-of-the-art patient-specific cancer gene prioritization methods. The comparisons are with respect to a novel evaluation method that takes into account the personalized nature of the problem. We show that our approach outperforms the existing alternatives for both the TCGA and the cell line data. In addition, we show that the KEGG/Reactome pathways enriched in our ranked genes and those that are enriched in cell lines' reference sets overlap significantly when compared to the overlaps achieved by the rankings of the alternative methods. Our findings can provide valuable information toward the development of personalized treatments and therapies. AVAILABILITY AND IMPLEMENTATION: All the codes and data are available at https://github.com/abu-compbio/PersonaDrive, and the data underlying this article are available in Zenodo, at https://doi.org/10.5281/zenodo.6520187. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Genômica/métodos , Medicina de Precisão/métodos , Mutação , Oncogenes
3.
BMC Bioinformatics ; 22(1): 62, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568049

RESUMO

BACKGROUND: Recent cancer genomic studies have generated detailed molecular data on a large number of cancer patients. A key remaining problem in cancer genomics is the identification of driver genes. RESULTS: We propose BetweenNet, a computational approach that integrates genomic data with a protein-protein interaction network to identify cancer driver genes. BetweenNet utilizes a measure based on betweenness centrality on patient specific networks to identify the so-called outlier genes that correspond to dysregulated genes for each patient. Setting up the relationship between the mutated genes and the outliers through a bipartite graph, it employs a random-walk process on the graph, which provides the final prioritization of the mutated genes. We compare BetweenNet against state-of-the art cancer gene prioritization methods on lung, breast, and pan-cancer datasets. CONCLUSIONS: Our evaluations show that BetweenNet is better at recovering known cancer genes based on multiple reference databases. Additionally, we show that the GO terms and the reference pathways enriched in BetweenNet ranked genes and those that are enriched in known cancer genes overlap significantly when compared to the overlaps achieved by the rankings of the alternative methods.


Assuntos
Genômica , Neoplasias , Oncogenes , Mapas de Interação de Proteínas , Redes Reguladoras de Genes , Humanos , Neoplasias/genética
4.
BMC Bioinformatics ; 22(1): 89, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632116

RESUMO

BACKGROUND: Matrix factorization methods are linear models, with limited capability to model complex relations. In our work, we use tropical semiring to introduce non-linearity into matrix factorization models. We propose a method called Sparse Tropical Matrix Factorization (STMF) for the estimation of missing (unknown) values in sparse data. RESULTS: We evaluate the efficiency of the STMF method on both synthetic data and biological data in the form of gene expression measurements downloaded from The Cancer Genome Atlas (TCGA) database. Tests on unique synthetic data showed that STMF approximation achieves a higher correlation than non-negative matrix factorization (NMF), which is unable to recover patterns effectively. On real data, STMF outperforms NMF on six out of nine gene expression datasets. While NMF assumes normal distribution and tends toward the mean value, STMF can better fit to extreme values and distributions. CONCLUSION: STMF is the first work that uses tropical semiring on sparse data. We show that in certain cases semirings are useful because they consider the structure, which is different and simpler to understand than it is with standard linear algebra.


Assuntos
Algoritmos , Neoplasias , Expressão Gênica , Humanos , Neoplasias/genética
5.
Bioinformatics ; 36(3): 872-879, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31432076

RESUMO

MOTIVATION: Genomic analyses from large cancer cohorts have revealed the mutational heterogeneity problem which hinders the identification of driver genes based only on mutation profiles. One way to tackle this problem is to incorporate the fact that genes act together in functional modules. The connectivity knowledge present in existing protein-protein interaction (PPI) networks together with mutation frequencies of genes and the mutual exclusivity of cancer mutations can be utilized to increase the accuracy of identifying cancer driver modules. RESULTS: We present a novel edge-weighted random walk-based approach that incorporates connectivity information in the form of protein-protein interactions (PPIs), mutual exclusivity and coverage to identify cancer driver modules. MEXCOwalk outperforms several state-of-the-art computational methods on TCGA pan-cancer data in terms of recovering known cancer genes, providing modules that are capable of classifying normal and tumor samples and that are enriched for mutations in specific cancer types. Furthermore, the risk scores determined with output modules can stratify patients into low-risk and high-risk groups in multiple cancer types. MEXCOwalk identifies modules containing both well-known cancer genes and putative cancer genes that are rarely mutated in the pan-cancer data. The data, the source code and useful scripts are available at: https://github.com/abu-compbio/MEXCOwalk. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Neoplasias , Algoritmos , Redes Reguladoras de Genes , Humanos , Mutação , Software
6.
Bioinformatics ; 35(22): 4760-4763, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31150052

RESUMO

SUMMARY: Long non-coding RNAs (lncRNAs) can act as molecular sponge or decoys for an RNA-binding protein (RBP) through their RBP-binding sites, thereby modulating the expression of all target genes of the corresponding RBP of interest. Here, we present a web tool named RBPSponge to explore lncRNAs based on their potential to act as a sponge for an RBP of interest. RBPSponge identifies the occurrences of RBP-binding sites and CLIP peaks on lncRNAs, and enables users to run statistical analyses to investigate the regulatory network between lncRNAs, RBPs and targets of RBPs. AVAILABILITY AND IMPLEMENTATION: The web server is available at https://www.RBPSponge.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA Longo não Codificante/genética , Sítios de Ligação , Genoma , Ligação Proteica , Proteínas de Ligação a RNA , Software
7.
Mol Cell ; 48(2): 195-206, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22959275

RESUMO

LIN28 is a conserved RNA-binding protein implicated in pluripotency, reprogramming, and oncogenesis. It was previously shown to act primarily by blocking let-7 microRNA (miRNA) biogenesis, but here we elucidate distinct roles of LIN28 regulation via its direct messenger RNA (mRNA) targets. Through crosslinking and immunoprecipitation coupled with high-throughput sequencing (CLIP-seq) in human embryonic stem cells and somatic cells expressing exogenous LIN28, we have defined discrete LIN28-binding sites in a quarter of human transcripts. These sites revealed that LIN28 binds to GGAGA sequences enriched within loop structures in mRNAs, reminiscent of its interaction with let-7 miRNA precursors. Among LIN28 mRNA targets, we found evidence for LIN28 autoregulation and also direct but differing effects on the protein abundance of splicing regulators in somatic and pluripotent stem cells. Splicing-sensitive microarrays demonstrated that exogenous LIN28 expression causes widespread downstream alternative splicing changes. These findings identify important regulatory functions of LIN28 via direct mRNA interactions.


Assuntos
Processamento Alternativo/genética , RNA Mensageiro , Proteínas de Ligação a RNA , Sítios de Ligação/genética , Células-Tronco Embrionárias , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Motivos de Nucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
8.
Nature ; 499(7457): 172-7, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23846655

RESUMO

RNA-binding proteins are key regulators of gene expression, yet only a small fraction have been functionally characterized. Here we report a systematic analysis of the RNA motifs recognized by RNA-binding proteins, encompassing 205 distinct genes from 24 diverse eukaryotes. The sequence specificities of RNA-binding proteins display deep evolutionary conservation, and the recognition preferences for a large fraction of metazoan RNA-binding proteins can thus be inferred from their RNA-binding domain sequence. The motifs that we identify in vitro correlate well with in vivo RNA-binding data. Moreover, we can associate them with distinct functional roles in diverse types of post-transcriptional regulation, enabling new insights into the functions of RNA-binding proteins both in normal physiology and in human disease. These data provide an unprecedented overview of RNA-binding proteins and their targets, and constitute an invaluable resource for determining post-transcriptional regulatory mechanisms in eukaryotes.


Assuntos
Regulação da Expressão Gênica/genética , Motivos de Nucleotídeos/genética , Proteínas de Ligação a RNA/metabolismo , Transtorno Autístico/genética , Sequência de Bases , Sítios de Ligação/genética , Sequência Conservada/genética , Células Eucarióticas/metabolismo , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína/genética , Fatores de Processamento de RNA , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
9.
Nucleic Acids Res ; 44(9): e83, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-26837572

RESUMO

Recent studies show that RNA-binding proteins (RBPs) and microRNAs (miRNAs) function in coordination with each other to control post-transcriptional regulation (PTR). Despite this, the majority of research to date has focused on the regulatory effect of individual RBPs or miRNAs. Here, we mapped both RBP and miRNA binding sites on human 3'UTRs and utilized this collection to better understand PTR. We show that the transcripts that lack competition for HuR binding are destabilized more after HuR depletion. We also confirm this finding for PUM1(2) by measuring genome-wide expression changes following the knockdown of PUM1(2) in HEK293 cells. Next, to find potential cooperative interactions, we identified the pairs of factors whose sites co-localize more often than expected by random chance. Upon examining these results for PUM1(2), we found that transcripts where the sites of PUM1(2) and its interacting miRNA form a stem-loop are more stabilized upon PUM1(2) depletion. Finally, using dinucleotide frequency and counts of regulatory sites as features in a regression model, we achieved an AU-ROC of 0.86 in predicting mRNA half-life in BEAS-2B cells. Altogether, our results suggest that future studies of PTR must consider the combined effects of RBPs and miRNAs, as well as their interactions.


Assuntos
MicroRNAs/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas/genética , Sítios de Ligação/genética , Linhagem Celular Tumoral , Mapeamento Cromossômico , Biologia Computacional/métodos , Células HEK293 , Meia-Vida , Células HeLa , Humanos , Células MCF-7 , Conformação de Ácido Nucleico , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Transcrição Gênica/genética
10.
Bioinformatics ; 32(2): 203-10, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26411870

RESUMO

MOTIVATION: Rapid advances in genotyping and genome-wide association studies have enabled the discovery of many new genotype-phenotype associations at the resolution of individual markers. However, these associations explain only a small proportion of theoretically estimated heritability of most diseases. In this work, we propose an integrative mixture model called JBASE: joint Bayesian analysis of subphenotypes and epistasis. JBASE explores two major reasons of missing heritability: interactions between genetic variants, a phenomenon known as epistasis and phenotypic heterogeneity, addressed via subphenotyping. RESULTS: Our extensive simulations in a wide range of scenarios repeatedly demonstrate that JBASE can identify true underlying subphenotypes, including their associated variants and their interactions, with high precision. In the presence of phenotypic heterogeneity, JBASE has higher Power and lower Type 1 Error than five state-of-the-art approaches. We applied our method to a sample of individuals from Mexico with Type 2 diabetes and discovered two novel epistatic modules, including two loci each, that define two subphenotypes characterized by differences in body mass index and waist-to-hip ratio. We successfully replicated these subphenotypes and epistatic modules in an independent dataset from Mexico genotyped with a different platform. AVAILABILITY AND IMPLEMENTATION: JBASE is implemented in C++, supported on Linux and is available at http://www.cs.toronto.edu/∼goldenberg/JBASE/jbase.tar.gz. The genotype data underlying this study are available upon approval by the ethics review board of the Medical Centre Siglo XXI. Please contact Dr Miguel Cruz at mcruzl@yahoo.com for assistance with the application. CONTACT: anna.goldenberg@utoronto.ca SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Epistasia Genética , Fenótipo , Teorema de Bayes , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Genótipo , Técnicas de Genotipagem , Humanos , México , Relação Cintura-Quadril
11.
Mol Syst Biol ; 12(5): 872, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27222539

RESUMO

Combination antibiotic therapies are being increasingly used in the clinic to enhance potency and counter drug resistance. However, the large search space of candidate drugs and dosage regimes makes the identification of effective combinations highly challenging. Here, we present a computational approach called INDIGO, which uses chemogenomics data to predict antibiotic combinations that interact synergistically or antagonistically in inhibiting bacterial growth. INDIGO quantifies the influence of individual chemical-genetic interactions on synergy and antagonism and significantly outperforms existing approaches based on experimental evaluation of novel predictions in Escherichia coli Our analysis revealed a core set of genes and pathways (e.g. central metabolism) that are predictive of antibiotic interactions. By identifying the interactions that are associated with orthologous genes, we successfully estimated drug-interaction outcomes in the bacterial pathogens Mycobacterium tuberculosis and Staphylococcus aureus, using the E. coli INDIGO model. INDIGO thus enables the discovery of effective combination therapies in less-studied pathogens by leveraging chemogenomics data in model organisms.


Assuntos
Antibacterianos/farmacologia , Biologia Computacional/métodos , Escherichia coli/genética , Mycobacterium tuberculosis/genética , Staphylococcus aureus/genética , Bases de Dados de Compostos Químicos , Bases de Dados Genéticas , Interações Medicamentosas , Quimioterapia Combinada , Escherichia coli/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
12.
BMC Bioinformatics ; 17(1): 215, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27188311

RESUMO

BACKGROUND: RNA molecules fold into complex three-dimensional shapes, guided by the pattern of hydrogen bonding between nucleotides. This pattern of base pairing, known as RNA secondary structure, is critical to their cellular function. Recently several diverse methods have been developed to assay RNA secondary structure on a transcriptome-wide scale using high-throughput sequencing. Each approach has its own strengths and caveats, however there is no widely available tool for visualizing and comparing the results from these varied methods. METHODS: To address this, we have developed Structure Surfer, a database and visualization tool for inspecting RNA secondary structure in six transcriptome-wide data sets from human and mouse ( http://tesla.pcbi.upenn.edu/strucuturesurfer/ ). The data sets were generated using four different high-throughput sequencing based methods. Each one was analyzed with a scoring pipeline specific to its experimental design. Users of Structure Surfer have the ability to query individual loci as well as detect trends across multiple sites. RESULTS: Here, we describe the included data sets and their differences. We illustrate the database's function by examining known structural elements and we explore example use cases in which combined data is used to detect structural trends. CONCLUSIONS: In total, Structure Surfer provides an easy-to-use database and visualization interface for allowing users to interrogate the currently available transcriptome-wide RNA secondary structure information for mammals.


Assuntos
Bases de Dados Factuais , RNA/química , Transcriptoma , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Conformação de Ácido Nucleico , RNA/metabolismo , Análise de Sequência de RNA
13.
Nucleic Acids Res ; 41(Web Server issue): W180-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23754853

RESUMO

RBPmotif web server (http://www.rnamotif.org) implements tools to identify binding preferences of RNA-binding proteins (RBPs). Given a set of sequences that are known to be bound and unbound by the RBP of interest, RBPmotif provides two types of analysis: (i) de novo motif finding when there is no a priori knowledge on RBP's binding preferences and (ii) analysis of structure preferences when there is a previously identified sequence motif for the RBP. De novo motif finding is performed with the previously published RNAcontext algorithm that learns discriminative motif models to identify both sequence and structure preferences. The results of this analysis include the inferred binding preferences of the RBP and the added predictive value of incorporating structure preferences. Second type of analysis investigates whether the instances of the previously identified sequence motif are enriched in a particular structure context in bound sequences, relative to its instances in unbound sequences. On completion, the results page shows the comparison of structure contexts of the motif instances between bound and unbound sequences and an assessment of statistical significance of detected preferences. In summary, RBPmotif web server enables the concurrent analysis of sequence and structure preferences of RBPs through a user-friendly interface.


Assuntos
Proteínas de Ligação a RNA/metabolismo , RNA/química , Software , Algoritmos , Sítios de Ligação , Internet , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , RNA/metabolismo , Análise de Sequência de RNA
14.
J Chem Inf Model ; 54(8): 2286-93, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25026390

RESUMO

Physicochemical properties of compounds have been instrumental in selecting lead compounds with increased drug-likeness. However, the relationship between physicochemical properties of constituent drugs and the tendency to exhibit drug interaction has not been systematically studied. We assembled physicochemical descriptors for a set of antifungal compounds ("drugs") previously examined for interaction. Analyzing the relationship between molecular weight, lipophilicity, H-bond donor, and H-bond acceptor values for drugs and their propensity to show pairwise antifungal drug synergy, we found that combinations of two lipophilic drugs had a greater tendency to show drug synergy. We developed a more refined decision tree model that successfully predicted drug synergy in stringent cross-validation tests based on only lipophilicity of drugs. Our predictions achieved a precision of 63% and allowed successful prediction for 58% of synergistic drug pairs, suggesting that this phenomenon can extend our understanding for a substantial fraction of synergistic drug interactions. We also generated and analyzed a large-scale synergistic human toxicity network, in which we observed that combinations of lipophilic compounds show a tendency for increased toxicity. Thus, lipophilicity, a simple and easily determined molecular descriptor, is a powerful predictor of drug synergy. It is well established that lipophilic compounds (i) are promiscuous, having many targets in the cell, and (ii) often penetrate into the cell via the cellular membrane by passive diffusion. We discuss the positive relationship between drug lipophilicity and drug synergy in the context of potential drug synergy mechanisms.


Assuntos
Antifúngicos/química , Modelos Estatísticos , Animais , Antifúngicos/farmacologia , Benzamidas/química , Benzamidas/toxicidade , Benzilatos/química , Benzilatos/toxicidade , Árvores de Decisões , Sinergismo Farmacológico , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Humanos , Interações Hidrofóbicas e Hidrofílicas , Naftalenos/química , Naftalenos/farmacologia , Nortropanos/química , Nortropanos/toxicidade , Pentamidina/química , Pentamidina/farmacologia , Terbinafina , Triprolidina/química , Triprolidina/toxicidade
15.
Nucleic Acids Res ; 39(Database issue): D301-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21036867

RESUMO

The RNA-Binding Protein DataBase (RBPDB) is a collection of experimental observations of RNA-binding sites, both in vitro and in vivo, manually curated from primary literature. To build RBPDB, we performed a literature search for experimental binding data for all RNA-binding proteins (RBPs) with known RNA-binding domains in four metazoan species (human, mouse, fly and worm). In total, RPBDB contains binding data on 272 RBPs, including 71 that have motifs in position weight matrix format, and 36 sets of sequences of in vivo-bound transcripts from immunoprecipitation experiments. The database is accessible by a web interface which allows browsing by domain or by organism, searching and export of records, and bulk data downloads. Users can also use RBPDB to scan sequences for RBP-binding sites. RBPDB is freely available, without registration at http://rbpdb.ccbr.utoronto.ca/.


Assuntos
Bases de Dados de Proteínas , Proteínas de Ligação a RNA/metabolismo , Animais , Sítios de Ligação , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Humanos , Camundongos , Estrutura Terciária de Proteína , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Análise de Sequência de RNA
16.
IEEE/ACM Trans Comput Biol Bioinform ; 20(5): 3163-3172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37030791

RESUMO

Since many biological processes are governed by protein-protein interactions, understanding which mutations lead to a disruption in these interactions is profoundly important for cancer research. Most of the existing methods focus on the stability of the protein without considering the specific effects of a mutation on its interactions with other proteins. Here, we focus on somatic mutations that appear on the interface regions of the protein and predict the interactions that would be affected by a mutation of interest. We build an ensemble model, Predator, that classifies the interface mutations as disruptive or nondisruptive based on the predicted effects of mutations on specific protein-protein interactions. We show that Predator outperforms existing approaches in literature in terms of prediction accuracy. We then apply Predator on various TCGA cancer cohorts and perform comprehensive analysis at cohort level, patient level, and gene level in determining the genes whose interface mutations tend to yield a disruption in its interactions. The predictions obtained by Predator shed light on interesting patterns on several genes for each cohort regarding their potential as cancer drivers. Our analyses further reveal that the identified genes and their frequently disrupted partners exhibit patterns of mutually exclusivity across cancer cohorts under study.


Assuntos
Neoplasias , Humanos , Mutação/genética , Neoplasias/genética , Proteínas/genética
17.
Cell Rep ; 42(3): 112242, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36924490

RESUMO

Here, we ask how developing precursors maintain the balance between cell genesis for tissue growth and establishment of adult stem cell pools, focusing on postnatal forebrain neural precursor cells (NPCs). We show that these NPCs are transcriptionally primed to differentiate and that the primed mRNAs are associated with the translational repressor 4E-T. 4E-T also broadly associates with other NPC mRNAs encoding transcriptional regulators, and these are preferentially depleted from ribosomes, consistent with repression. By contrast, a second translational regulator, Cpeb4, associates with diverse target mRNAs that are largely ribosome associated. The 4E-T-dependent mRNA association is functionally important because 4E-T knockdown or conditional knockout derepresses proneurogenic mRNA translation and perturbs maintenance versus differentiation of early postnatal NPCs in culture and in vivo. Thus, early postnatal NPCs are primed to differentiate, and 4E-T regulates the balance between cell genesis and stem cell expansion by sequestering and repressing mRNAs encoding transcriptional regulators.


Assuntos
Células-Tronco Neurais , Diferenciação Celular/fisiologia , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Corpos de Processamento , Biossíntese de Proteínas , Proteínas Repressoras/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo
18.
PLoS Comput Biol ; 6: e1000832, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20617199

RESUMO

Metazoan genomes encode hundreds of RNA-binding proteins (RBPs). These proteins regulate post-transcriptional gene expression and have critical roles in numerous cellular processes including mRNA splicing, export, stability and translation. Despite their ubiquity and importance, the binding preferences for most RBPs are not well characterized. In vitro and in vivo studies, using affinity selection-based approaches, have successfully identified RNA sequence associated with specific RBPs; however, it is difficult to infer RBP sequence and structural preferences without specifically designed motif finding methods. In this study, we introduce a new motif-finding method, RNAcontext, designed to elucidate RBP-specific sequence and structural preferences with greater accuracy than existing approaches. We evaluated RNAcontext on recently published in vitro and in vivo RNA affinity selected data and demonstrate that RNAcontext identifies known binding preferences for several control proteins including HuR, PTB, and Vts1p and predicts new RNA structure preferences for SF2/ASF, RBM4, FUSIP1 and SLM2. The predicted preferences for SF2/ASF are consistent with its recently reported in vivo binding sites. RNAcontext is an accurate and efficient motif finding method ideally suited for using large-scale RNA-binding affinity datasets to determine the relative binding preferences of RBPs for a wide range of RNA sequences and structures.


Assuntos
Sequência de Aminoácidos , Sítios de Ligação , Conformação Proteica , Proteínas de Ligação a RNA , Algoritmos , Motivos de Aminoácidos , Área Sob a Curva , Sequência de Bases , Bases de Dados de Proteínas , Modelos Genéticos , Modelos Estatísticos , Conformação de Ácido Nucleico , Ligação Proteica , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
19.
Front Genet ; 12: 746495, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899838

RESUMO

One of the key concepts employed in cancer driver gene identification is that of mutual exclusivity (ME); a driver mutation is less likely to occur in case of an earlier mutation that has common functionality in the same molecular pathway. Several ME tests have been proposed recently, however the current protocols to evaluate ME tests have two main limitations. Firstly the evaluations are mostly with respect to simulated data and secondly the evaluation metrics lack a network-centric view. The latter is especially crucial as the notion of common functionality can be achieved through searching for interaction patterns in relevant networks. We propose a network-centric framework to evaluate the pairwise significances found by statistical ME tests. It has three main components. The first component consists of metrics employed in the network-centric ME evaluations. Such metrics are designed so that network knowledge and the reference set of known cancer genes are incorporated in ME evaluations under a careful definition of proper control groups. The other two components are designed as further mechanisms to avoid confounders inherent in ME detection on top of the network-centric view. To this end, our second objective is to dissect the side effects caused by mutation load artifacts where mutations driving tumor subtypes with low mutation load might be incorrectly diagnosed as mutually exclusive. Finally, as part of the third main component, the confounding issue stemming from the use of nonspecific interaction networks generated as combinations of interactions from different tissues is resolved through the creation and use of tissue-specific networks in the proposed framework. The data, the source code and useful scripts are available at: https://github.com/abu-compbio/NetCentric.

20.
Sci Rep ; 10(1): 21971, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319839

RESUMO

The majority of the previous methods for identifying cancer driver modules output nonoverlapping modules. This assumption is biologically inaccurate as genes can participate in multiple molecular pathways. This is particularly true for cancer-associated genes as many of them are network hubs connecting functionally distinct set of genes. It is important to provide combinatorial optimization problem definitions modeling this biological phenomenon and to suggest efficient algorithms for its solution. We provide a formal definition of the Overlapping Driver Module Identification in Cancer (ODMIC) problem. We show that the problem is NP-hard. We propose a seed-and-extend based heuristic named DriveWays that identifies overlapping cancer driver modules from the graph built from the IntAct PPI network. DriveWays incorporates mutual exclusivity, coverage, and the network connectivity information of the genes. We show that DriveWays outperforms the state-of-the-art methods in recovering well-known cancer driver genes performed on TCGA pan-cancer data. Additionally, DriveWay's output modules show a stronger enrichment for the reference pathways in almost all cases. Overall, we show that enabling modules to overlap improves the recovery of functional pathways filtered with known cancer drivers, which essentially constitute the reference set of cancer-related pathways.


Assuntos
Algoritmos , Biologia Computacional/métodos , Neoplasias/genética , Humanos , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA