Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 62(17): 2677-2688, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37556730

RESUMO

Polyketide synthases (PKSs) are megaenzymes that form chemically diverse polyketides and are found within the genomes of nearly all classes of life. We recently discovered the type I PKS from the apicomplexan parasite Toxoplasma gondii, TgPKS2, which contains a unique putative chain release mechanism that includes ketosynthase (KS) and thioester reductase (TR) domains. Our bioinformatic analysis of the thioester reductase of TgPKS2, TgTR, suggests differences compared to other systems and hints at a possibly conserved release mechanism within the apicomplexan subclass Coccidia. To evaluate this release module, we first isolated TgTR and observed that it is capable of 4 electron (4e-) reduction of octanoyl-CoA to the primary alcohol, octanol, utilizing NADH. TgTR was also capable of generating octanol in the presence of octanal and NADH, but no reactions were observed when NADPH was supplied as a cofactor. To biochemically characterize the protein, we measured the catalytic efficiency of TgTR using a fluorescence assay and determined the TgTR binding affinity for cofactor and substrates using isothermal titration calorimetry (ITC). We additionally show that TgTR is capable of reducing an acyl carrier protein (ACP)-tethered substrate by liquid chromatography mass spectrometry and determine that TgTR binds to holo-TgACP4, its predicted cognate ACP, with a KD of 5.75 ± 0.77 µM. Finally, our transcriptional analysis shows that TgPKS2 is upregulated ∼4-fold in the parasite's cyst-forming bradyzoite stage compared to tachyzoites. Our study identifies features that distinguish TgPKS2 from well-characterized systems in bacteria and fungi and suggests it aids the T. gondii cyst stage.


Assuntos
NAD , Policetídeo Sintases , Policetídeo Sintases/química , NAD/metabolismo , Proteína de Transporte de Acila , Oxirredutases/metabolismo
2.
Chembiochem ; 24(17): e202300263, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37171468

RESUMO

Natural product discovery has traditionally relied on the isolation of small molecules from producing species, but genome-sequencing technology and advances in molecular biology techniques have expanded efforts to a wider array of organisms. Protists represent an underexplored kingdom for specialized metabolite searches despite bioinformatic analysis that suggests they harbor distinct biologically active small molecules. Specifically, pathogenic apicomplexan parasites, responsible for billions of global infections, have been found to possess multiple biosynthetic gene clusters, which hints at their capacity to produce polyketide metabolites. Biochemical studies have revealed unique features of apicomplexan polyketide synthases, but to date, the identity and function of the polyketides synthesized by these megaenzymes remains unknown. Herein, we discuss the potential for specialized metabolite production in protists and the possible evolution of polyketide biosynthetic gene clusters in apicomplexan parasites. We then focus on a polyketide synthase from the apicomplexan Toxoplasma gondii to discuss the unique domain architecture and properties of these proteins when compared to previously characterized systems, and further speculate on the possible functions for polyketides in these pathogenic parasites.


Assuntos
Apicomplexa , Policetídeos , Metabolismo Secundário , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Biologia Computacional , Apicomplexa/genética , Apicomplexa/metabolismo , Policetídeos/química
3.
ACS Chem Biol ; 18(4): 785-793, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-36893402

RESUMO

Natural products play critical roles as antibiotics, anticancer therapeutics, and biofuels. Polyketides are a distinct natural product class of structurally diverse secondary metabolites that are synthesized by polyketide synthases (PKSs). The biosynthetic gene clusters that encode PKSs have been found across nearly all realms of life, but those from eukaryotic organisms are relatively understudied. A type I PKS from the eukaryotic apicomplexan parasite Toxoplasma gondii,TgPKS2, was recently discovered through genome mining, and the functional acyltransferase (AT) domains were found to be selective for malonyl-CoA substrates. To further characterize TgPKS2, we resolved assembly gaps within the gene cluster, which confirmed that the encoded protein consists of three distinct modules. We subsequently isolated and biochemically characterized the four acyl carrier protein (ACP) domains within this megaenzyme. We observed self-acylation─or substrate acylation without an AT domain─for three of the four TgPKS2 ACP domains with CoA substrates. Furthermore, CoA substrate specificity and kinetic parameters were determined for all four unique ACPs. TgACP2-4 were active with a wide scope of CoA substrates, while TgACP1 from the loading module was found to be inactive for self-acylation. Previously, self-acylation has only been observed in type II systems, which are enzymes that act in-trans with one another, and this represents the first report of this activity in a modular type I PKS whose domains function in-cis. Site-directed mutagenesis of specific TgPKS2 ACP3 acidic residues near the phosphopantetheinyl arm demonstrated that they influence self-acylation activity and substrate specificity, possibly by influencing substrate coordination or phosphopantetheinyl arm activation. Further, the lack of TgPKS2 ACP self-acylation with acetoacetyl-CoA, which is utilized by previously characterized type II PKS systems, suggests that the substrate carboxyl group may be critical for TgPKS2 ACP self-acylation. The unexpected properties observed from T. gondii PKS ACP domains highlight their distinction from well-characterized microbial and fungal systems. This work expands our understanding of ACP self-acylation beyond type II systems and helps pave the way for future studies on biosynthetic enzymes from eukaryotes.


Assuntos
Proteína de Transporte de Acila , Policetídeo Sintases , Toxoplasma , Proteína de Transporte de Acila/metabolismo , Acilação , Aciltransferases/química , Malonil Coenzima A/metabolismo , Policetídeo Sintases/metabolismo , Toxoplasma/metabolismo
4.
iScience ; 25(6): 104443, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35874921

RESUMO

Type I polyketide synthases (PKSs) are multidomain, multimodule enzymes capable of producing complex polyketide metabolites. These modules contain an acyltransferase (AT) domain, which selects acyl-CoA substrates to be incorporated into the metabolite scaffold. Herein, we reveal the sequences of three AT domains from a polyketide synthase (TgPKS2) from the apicomplexan parasite Toxoplasma gondii. Phylogenic analysis indicates these ATs (AT1, AT2, and AT3) are distinct from domains in well-characterized microbial biosynthetic gene clusters. Biochemical investigations revealed that AT1 and AT2 hydrolyze malonyl-CoA but the terminal AT3 domain is non-functional. We further identify an "on-off switch" residue that controls activity such that a single amino acid change in AT3 confers hydrolysis activity while the analogous mutation in AT2 eliminates activity. This biochemical analysis of AT domains from an apicomplexan PKS lays the foundation for further molecular and structural studies on PKSs from T. gondii and other protists.

5.
iScience ; 25(7): 104608, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35772031

RESUMO

[This corrects the article DOI: 10.1016/j.isci.2022.104443.].

6.
Nat Commun ; 12(1): 2193, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850151

RESUMO

Polyketides, one of the largest classes of natural products, are often clinically relevant. The ability to engineer polyketide biosynthesis to produce analogs is critically important. Acyltransferases (ATs) of modular polyketide synthases (PKSs) catalyze the installation of malonyl-CoA extenders into polyketide scaffolds. ATs have been targeted extensively to site-selectively introduce various extenders into polyketides. Yet, a complete inventory of AT residues responsible for substrate selection has not been established, limiting the scope of AT engineering. Here, molecular dynamics simulations are used to prioritize ~50 mutations within the active site of EryAT6 from erythromycin biosynthesis, leading to identification of two previously unexplored structural motifs. Exchanging both motifs with those from ATs with alternative extender specificities provides chimeric PKS modules with expanded and inverted substrate specificity. Our enhanced understanding of AT substrate selectivity and application of this motif-swapping strategy are expected to advance our ability to engineer PKSs towards designer polyketides.


Assuntos
Aciltransferases/química , Aciltransferases/metabolismo , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Aciltransferases/genética , Domínio Catalítico , Malonil Coenzima A , Simulação de Dinâmica Molecular , Mutagênese , Policetídeo Sintases/genética , Policetídeos , Engenharia de Proteínas , Metabolismo Secundário , Especificidade por Substrato
7.
ACS Synth Biol ; 8(6): 1391-1400, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31134799

RESUMO

The scaffolds of polyketides are constructed via assembly of extender units based on malonyl-CoA and its derivatives that are substituted at the C2-position with diverse chemical functionality. Subsequently, a transcription-factor-based biosensor for malonyl-CoA has proven to be a powerful tool for detecting malonyl-CoA, facilitating the dynamic regulation of malonyl-CoA biosynthesis and guiding high-throughput engineering of malonyl-CoA-dependent processes. Yet, a biosensor for the detection of malonyl-CoA derivatives has yet to be reported, severely restricting the application of high-throughput synthetic biology approaches to engineering extender unit biosynthesis and limiting the ability to dynamically regulate the biosynthesis of polyketide products that are dependent on such α-carboxyacyl-CoAs. Herein, the FapR biosensor was re-engineered and optimized for a range of mCoA concentrations across a panel of E. coli strains. The effector specificity of FapR was probed by cell-free transcription-translation, revealing that a variety of non-native and non-natural acyl-thioesters are FapR effectors. This FapR promiscuity proved sufficient for the detection of the polyketide extender unit methylmalonyl-CoA in E. coli, providing the first reported genetically encoded biosensor for this important metabolite. As such, the previously unknown broad effector promiscuity of FapR provides a platform to develop new tools and approaches that can be leveraged to overcome limitations of pathways that construct diverse α-carboxyacyl-CoAs and those that are dependent on them, including biofuels, antibiotics, anticancer drugs, and other value-added products.


Assuntos
Técnicas Biossensoriais/métodos , Malonil Coenzima A/análise , Policetídeo Sintases/metabolismo , Engenharia de Proteínas/métodos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Malonil Coenzima A/metabolismo , Redes e Vias Metabólicas , Policetídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Biologia Sintética , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA