Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 72(3): 543-560, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35962843

RESUMO

Acute myeloid leukaemia (AML) creates an immunosuppressive environment to conventional T cells through Arginase 2 (ARG2)-induced arginine depletion. We identify that AML blasts release the acute phase protein serum amyloid A (SAA), which acts in an autocrine manner to upregulate ARG2 expression and activity, and promote AML blast viability. Following in vitro cross-talk invariant natural killer T (iNKT) cells become activated, upregulate mitochondrial capacity, and release IFN-γ. iNKT retain their ability to proliferate and be activated despite the low arginine AML environment, due to the upregulation of Large Neutral Amino Acid Transporter-1 (LAT-1) and Argininosuccinate Synthetase 1 (ASS)-dependent amino acid pathways, resulting in AML cell death. T cell proliferation is restored in vitro and in vivo. The capacity of iNKT cells to restore antigen-specific T cell immunity was similarly demonstrated against myeloid-derived suppressor cells (MDSCs) in wild-type and Jα18-/- syngeneic lymphoma-bearing models in vivo. Thus, stimulation of iNKT cell activity has the potential as an immunotherapy against AML or as an adjunct to boost antigen-specific T cell immunotherapies in haematological or solid cancers.


Assuntos
Leucemia Mieloide Aguda , Células Supressoras Mieloides , Células T Matadoras Naturais , Humanos , Proliferação de Células , Arginina
2.
Proc Natl Acad Sci U S A ; 116(51): 25828-25838, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31772019

RESUMO

Proinflammatory responses induced by Toll-like receptors (TLRs) are dependent on the activation of the NF-ĸB and mitogen-activated protein kinase (MAPK) pathways, which coordinate the transcription and synthesis of proinflammatory cytokines. We demonstrate that BCL-3, a nuclear IĸB protein that regulates NF-ĸB, also controls TLR-induced MAPK activity by regulating the stability of the TPL-2 kinase. TPL-2 is essential for MAPK activation by TLR ligands, and the rapid proteasomal degradation of active TPL-2 is a critical mechanism limiting TLR-induced MAPK activity. We reveal that TPL-2 is a nucleocytoplasmic shuttling protein and identify the nucleus as the primary site for TPL-2 degradation. BCL-3 interacts with TPL-2 and promotes its degradation by promoting its nuclear localization. As a consequence, Bcl3-/- macrophages have increased TPL-2 stability following TLR stimulation, leading to increased MAPK activity and MAPK-dependent responses. Moreover, BCL-3-mediated regulation of TPL-2 stability sets the MAPK activation threshold and determines the amount of TLR ligand required to initiate the production of inflammatory cytokines. Thus, the nucleus is a key site in the regulation of TLR-induced MAPK activity. BCL-3 links control of the MAPK and NF-ĸB pathways in the nucleus, and BCL-3-mediated TPL-2 regulation impacts on the cellular decision to initiate proinflammatory cytokine production in response to TLR activation.


Assuntos
Proteína 3 do Linfoma de Células B/metabolismo , Núcleo Celular/metabolismo , Proteínas I-kappa B/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Toll-Like/metabolismo , Animais , Proteína 3 do Linfoma de Células B/genética , Citocinas/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Células RAW 264.7
3.
J Biol Chem ; 295(33): 11754-11763, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32587091

RESUMO

The transcription factor NF-ĸB is a master regulator of the innate immune response and plays a central role in inflammatory diseases by mediating the expression of pro-inflammatory cytokines. Ubiquitination-triggered proteasomal degradation of DNA-bound NF-ĸB strongly limits the expression of its target genes. Conversely, USP7 (deubiquitinase ubiquitin-specific peptidase 7) opposes the activities of E3 ligases, stabilizes DNA-bound NF-ĸB, and thereby promotes NF-ĸB-mediated transcription. Using gene expression and synthetic peptide arrays on membrane support and overlay analyses, we found here that inhibiting USP7 increases NF-ĸB ubiquitination and degradation, prevents Toll-like receptor-induced pro-inflammatory cytokine expression, and represents an effective strategy for controlling inflammation. However, the broad regulatory roles of USP7 in cell death pathways, chromatin, and DNA damage responses limit the use of catalytic inhibitors of USP7 as anti-inflammatory agents. To this end, we identified an NF-ĸB-binding site in USP7, ubiquitin-like domain 2, that selectively mediates interactions of USP7 with NF-ĸB subunits but is dispensable for interactions with other proteins. Moreover, we found that the amino acids 757LDEL760 in USP7 critically contribute to the interaction with the p65 subunit of NF-ĸB. Our findings support the notion that USP7 activity could be potentially targeted in a substrate-selective manner through the development of noncatalytic inhibitors of this deubiquitinase to abrogate NF-ĸB activity.


Assuntos
Fator de Transcrição RelA/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Ubiquitinação , Animais , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Proteólise , Peptidase 7 Específica de Ubiquitina/química
4.
Nucleic Acids Res ; 47(21): 11151-11163, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31598684

RESUMO

Phosphorylation of the NF-κB transcription factor is an important regulatory mechanism for the control of transcription. Here we identify serine 80 (S80) as a phosphorylation site on the p50 subunit of NF-κB, and IKKß as a p50 kinase. Transcriptomic analysis of cells expressing a p50 S80A mutant reveals a critical role for S80 in selectively regulating the TNFα inducible expression of a subset of NF-κB target genes including pro-inflammatory cytokines and chemokines. S80 phosphorylation regulates the binding of p50 to NF-κB binding (κB) sites in a sequence specific manner. Specifically, phosphorylation of S80 reduces the binding of p50 at κB sites with an adenine at the -1 position. Our analyses demonstrate that p50 S80 phosphorylation predominantly regulates transcription through the p50:p65 heterodimer, where S80 phosphorylation acts in trans to limit the NF-κB mediated transcription of pro-inflammatory genes. The regulation of a functional class of pro-inflammatory genes by the interaction of S80 phosphorylated p50 with a specific κB sequence describes a novel mechanism for the control of cytokine-induced transcriptional responses.


Assuntos
DNA/metabolismo , Quinase I-kappa B/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , NF-kappa B/metabolismo , Serina/metabolismo , Transcrição Gênica , Animais , Sítios de Ligação/genética , Domínio Catalítico , Células Cultivadas , DNA/genética , Células HEK293 , Humanos , Camundongos , NF-kappa B/química , Subunidade p50 de NF-kappa B/química , Fosforilação , Ligação Proteica , Especificidade por Substrato/genética
5.
Int J Mol Sci ; 21(12)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549410

RESUMO

Chromosomal rearrangements of the mixed lineage leukaemia (MLL, also known as KMT2A) gene on chromosome 11q23 are amongst the most common genetic abnormalities observed in human acute leukaemias. MLL rearrangements (MLLr) are the most common cytogenetic abnormalities in infant and childhood acute myeloid leukaemia (AML) and acute lymphocytic leukaemia (ALL) and do not normally acquire secondary mutations compared to other leukaemias. To model these leukaemias, we have used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing to induce MLL-AF9 (MA9) chromosomal rearrangements in murine hematopoietic stem and progenitor cell lines and primary cells. By utilizing a dual-single guide RNA (sgRNA) approach targeting the breakpoint cluster region of murine Mll and Af9 equivalent to that in human MA9 rearrangements, we show efficient de novo generation of MA9 fusion product at the DNA and RNA levels in the bulk population. The leukaemic features of MA9-induced disease were observed including increased clonogenicity, enrichment of c-Kit-positive leukaemic stem cells and increased MA9 target gene expression. This approach provided a rapid and reliable means of de novo generation of Mll-Af9 genetic rearrangements in murine haematopoietic stem and progenitor cells (HSPCs), using CRISPR/Cas9 technology to produce a cellular model of MA9 leukaemias which faithfully reproduces many features of the human disease in vitro.


Assuntos
Edição de Genes/métodos , Células-Tronco Hematopoéticas/citologia , Histona-Lisina N-Metiltransferase/genética , Leucemia/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-kit/genética , Animais , Sistemas CRISPR-Cas , Células Cultivadas , Pontos de Quebra do Cromossomo , Modelos Animais de Doenças , Células HEK293 , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Modelos Biológicos , Células NIH 3T3
6.
Int J Cancer ; 145(8): 2201-2208, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30485425

RESUMO

Therapeutic approaches which aim to target Acute Myeloid Leukaemia through enhancement of patients' immune responses have demonstrated limited efficacy to date, despite encouraging preclinical data. Examination of AML patients treated with azacitidine (AZA) and vorinostat (VOR) in a Phase II trial, demonstrated an increase in the expression of Cancer-Testis Antigens (MAGE, RAGE, LAGE, SSX2 and TRAG3) on blasts and that these can be recognised by circulating antigen-specific T cells. Although the T cells have the potential to be activated by these unmasked antigens, the low arginine microenvironment created by AML blast Arginase II activity acts a metabolic brake leading to T cell exhaustion. T cells exhibit impaired proliferation, reduced IFN-γ release and PD-1 up-regulation in response to antigen stimulation under low arginine conditions. Inhibition of arginine metabolism enhanced the proliferation and cytotoxicity of anti-NY-ESO T cells against AZA/VOR treated AML blasts, and can boost anti-CD33 Chimeric Antigen Receptor-T cell cytotoxicity. Therefore, measurement of plasma arginine concentrations in combination with therapeutic targeting of arginase activity in AML blasts could be a key adjunct to immunotherapy.


Assuntos
Antígenos de Neoplasias/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Arginase/antagonistas & inibidores , Arginina/sangue , Leucemia Mieloide/terapia , Doença Aguda , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Arginase/sangue , Arginase/metabolismo , Arginina/metabolismo , Azacitidina/administração & dosagem , Humanos , Imunoterapia/métodos , Células K562 , Leucemia Mieloide/imunologia , Leucemia Mieloide/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Vorinostat/administração & dosagem
8.
Blood ; 123(15): 2389-400, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24516045

RESUMO

The loss of regulation of cell proliferation is a key event in leukemic transformation, and the oncogene tribbles (Trib)2 is emerging as a pivotal target of transcription factors in acute leukemias. Deregulation of the transcription factor E2F1, normally repressed by CCAAT enhancer-binding protein α (C/EBPα)-p42, occurs in acute myeloid leukemia (AML), resulting in the perturbation of cell cycle and apoptosis, emphasizing its importance in the molecular pathogenesis of AML. Here we show that E2F family members directly regulate Trib2 in leukemic cells and identify a feedback regulatory loop for E2F1, C/EBPα, and Trib2 in AML cell proliferation and survival. Further analyses revealed that E2F1-mediated Trib2 expression was repressed by C/EBPα-p42, and in normal granulocyte/macrophage progenitor cells, we detect C/EBPα bound to the Trib2 promoter. Pharmacological inhibition of the cell cycle or Trib2 knockdown resulted in a block in AML cell proliferation. Our work proposes a novel paradigm whereby E2F1 plays a key role in the regulation of Trib2 expression important for AML cell proliferation control. Importantly, we identify the contribution of dysregulated C/EBPα and E2F1 to elevated Trib2 expression and leukemic cell survival, which likely contributes to the initiation and maintenance of AML and may have significant implications for normal and malignant hematopoiesis.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Transformação Celular Neoplásica/genética , Fator de Transcrição E2F1/genética , Regulação Neoplásica da Expressão Gênica/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leucemia Mieloide Aguda/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Células 3T3 , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proliferação de Células , Imunoprecipitação da Cromatina , Fator de Transcrição E2F1/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Retroalimentação Fisiológica/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
9.
Haematologica ; 101(10): 1228-1236, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27390356

RESUMO

The PML/RARA fusion protein occurs as a result of the t(15;17) translocation in the acute promyelocytic leukemia subtype of human acute myeloid leukemia. Gain of chromosome 8 is the most common chromosomal gain in human acute myeloid leukemia, including acute promyelocytic leukemia. We previously demonstrated that gain of chromosome 8-containing MYC is of central importance in trisomy 8, but the role of the nearby TRIB1 gene has not been experimentally addressed in this context. We have now tested the hypothesis that both MYC and TRIB1 have functional roles underlying leukemogenesis of trisomy 8 by using retroviral vectors to express MYC and TRIB1 in wild-type bone marrow and in marrow that expressed a PML/RARA transgene. Interestingly, although MYC and TRIB1 readily co-operated in leukemogenesis for wild-type bone marrow, TRIB1 provided no selective advantage to cells expressing PML/RARA. We hypothesized that this lack of co-operation between PML/RARA and TRIB1 reflected a common pathway for their effect: both proteins targeting the myeloid transcription factor C/EBPα. In support of this idea, TRIB1 expression abrogated the all-trans retinoic acid response of acute promyelocytic leukemia cells in vitro and in vivo Our data delineate the common and redundant inhibitory effects of TRIB1 and PML/RARA on C/EBPα providing a potential explanation for the lack of selection of TRIB1 in human acute promyelocytic leukemia, and highlighting the key role of C/EBPs in acute promyelocytic leukemia pathogenesis and therapeutic response. In addition, the co-operativity we observed between MYC and TRIB1 in the absence of PML/RARA show that, outside of acute promyelocytic leukemia, gain of both genes may drive selection for trisomy 8.


Assuntos
Leucemia Mieloide Aguda/patologia , Leucemia Promielocítica Aguda/patologia , Animais , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Cromossomos Humanos Par 8 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Leucemia Mieloide Aguda/etiologia , Leucemia Promielocítica Aguda/etiologia , Camundongos , Proteínas de Fusão Oncogênica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Trissomia
10.
Int J Mol Sci ; 17(9)2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27563873

RESUMO

Tribbles homolog 2 (TRIB2) is a member of the mammalian Tribbles family of serine/threonine pseudokinases (TRIB1-3). Studies of TRIB2 indicate that many of the molecular interactions between the single Drosophila Tribbles (Trbl) protein and interacting partners are evolutionary conserved. In this study, we examined the relationship between TRIB2 and cell division cycle 25 (CDC25) family of dual-specificity protein phosphatases (mammalian homologues of Drosophila String), which are key physiological cell cycle regulators. Using co-immunoprecipitation we demonstrate that TRIB2 interacts with CDC25B and CDC25C selectively. Forced overexpression of TRIB2 caused a marked decrease in total CDC25C protein levels. Following inhibition of the proteasome, CDC25C was stabilized in the nuclear compartment. This implicates TRIB2 as a regulator of nuclear CDC25C turnover. In complementary ubiquitination assays, we show that TRIB2-mediated degradation of CDC25C is associated with lysine-48-linked CDC25C polyubiquitination driven by the TRIB2 kinase-like domain. A cell cycle associated role for TRIB2 is further supported by the cell cycle regulated expression of TRIB2 protein levels. Our findings reveal mitotic CDC25C as a new target of TRIB2 that is degraded via the ubiquitin proteasome system. Inappropriate CDC25C regulation could mechanistically underlie TRIB2 mediated regulation of cellular proliferation in neoplastic cells.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fosfatases cdc25/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Fosfatases de Especificidade Dupla/genética , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Ubiquitinação/genética , Ubiquitinação/fisiologia , Fosfatases cdc25/genética
11.
Biochem Soc Trans ; 43(5): 1089-94, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517929

RESUMO

Tribbles family of pseudokinase proteins are known to mediate the degradation of target proteins in Drosophila and mammalian systems. The main protein proteolysis pathway in eukaryotic cells is the ubiquitin proteasome system (UPS). The tribbles homolog 2 (TRIB2) mammalian family member has been well characterized for its role in murine and human leukaemia, lung and liver cancer. One of the most characterized substrates for TRIB2-mediated degradation is the myeloid transcription factor CCAAT enhancer binding protein α (C/EBPα). However, across a number of cancers, the molecular interactions that take place between TRIB2 and factors involved in the UPS are varied and have differential downstream effects. This review summarizes our current knowledge of these interactions and how this information is important for our understanding of TRIB2 in cancer.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Neoplasias/genética , Neoplasias/patologia , Proteólise , Transdução de Sinais
12.
Blood ; 121(21): 4265-70, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23550039

RESUMO

There is growing research interest in the mammalian Tribbles (Trib) family of serine/threonine pseudokinases and their oncogenic association with acute leukemias. This review is to understand the role of Trib genes in hematopoietic malignancies and their potential as targets for novel therapeutic strategies in acute myeloid leukemia and acute lymphoblastic leukemia. We discuss the role of Tribs as central signaling mediators in different subtypes of acute leukemia and propose that inhibition of dysregulated Trib signaling may be therapeutically beneficial.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Leucemia Mieloide Aguda/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras/fisiologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Proteínas de Ciclo Celular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Repressoras/metabolismo
13.
Int J Neurosci ; 125(1): 70-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24628580

RESUMO

It is well established that neuroinflammation is associated with the progression of many neurodegenerative diseases, including Parkinson's disease (PD). Activated microglia and elevated levels of pro-inflammatory cytokines such as interleukin-1ß (IL-1ß) have been found in the brain and cerebrospinal fluid of PD patients, suggesting that IL-1ß may be involved in the pathogenesis of this disease. This study aimed to knock down the expression of the interleukin-1 type 1 receptor (IL-1R1) to evaluate any potential therapeutic effect of limiting the action of IL-1ß in the substantia nigra following a unilateral intrastriatal 6-hydroxydopamine (6-OHDA) lesion in rats. Adult Sprague-Dawley rats received intranigral injections of shRNA specific for IL-1R1, followed 2 weeks later by intrastriatal 6-OHDA. Injection of IL-1R1 shRNA did not prevent 6-OHDA-induced loss of motor function or loss of nigral dopamine neurons. IL-1R1 expression was increased in the midbrain following 6-OHDA injection; this effect was attenuated in 6-OHDA-treated animals that had received IL-1R1 shRNA. These data suggest that while IL-1R1 was increased in 6-OHDA-treated animals and reduced following shRNA injection, the neurodegeneration induced by 6-OHDA was not mediated through IL-1R1.


Assuntos
Corpo Estriado/fisiologia , Doença de Parkinson/patologia , Doença de Parkinson/prevenção & controle , Receptores Tipo I de Interleucina-1/metabolismo , Adrenérgicos/toxicidade , Anfetaminas , Análise de Variância , Animais , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Oxidopamina/toxicidade , Doença de Parkinson/etiologia , RNA Interferente Pequeno/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptores Tipo I de Interleucina-1/genética , Comportamento Estereotipado/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
14.
Cancer Cell ; 10(5): 401-11, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17097562

RESUMO

Tribbles homolog 2 (Trib2) was identified as a downregulated transcript in leukemic cells undergoing growth arrest. To investigate the effects of Trib2 in hematopoietic progenitors, mice were reconstituted with hematopoietic stem cells retrovirally expressing Trib2. Trib2-transduced bone marrow cells exhibited a growth advantage ex vivo and readily established factor-dependent cell lines. In vivo, Trib2-reconstituted mice uniformly developed fatal transplantable acute myelogenous leukemia (AML). In mechanistic studies, we found that Trib2 associated with and inhibited C/EBPalpha. Furthermore, Trib2 expression was elevated in a subset of human AML patient samples. Together, our data identify Trib2 as an oncogene that induces AML through a mechanism involving inactivation of C/EBPalpha.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Transplante de Medula Óssea , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leucemia Mieloide Aguda/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Oncogenes , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Taxa de Sobrevida , Quimeras de Transplante
15.
Dis Model Mech ; 17(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616733

RESUMO

Apoptosis is characterized by membrane blebbing and apoptotic body formation. Caspase cleavage of ROCK1 generates an active fragment that promotes actin-myosin-mediated contraction and membrane blebbing during apoptosis. Expression of caspase-resistant non-cleavable ROCK1 (Rock1 NC) prolonged survival of mice that rapidly develop B cell lymphomas due to Eµ-Myc transgene expression. Eµ-Myc; Rock1 NC mice had significantly fewer bone marrow cells relative to those in Eµ-Myc mice expressing wild-type ROCK1 (Rock1 WT), which was associated with altered cell cycle profiles. Circulating macrophage numbers were lower in Eµ-Myc; Rock1 NC mice, but there were higher levels of bone marrow macrophages, consistent with spontaneous cell death in Eµ-Myc; Rock1 NC mouse bone marrows being more inflammatory. Rock1 WT recipient mice transplanted with pre-neoplastic Eµ-Myc; Rock1 NC bone marrow cells survived longer than mice transplanted with Eµ-Myc; Rock1 WT cells, indicating that the survival benefit was intrinsic to the Eµ-Myc; Rock1 NC bone marrow cells. The results suggest that the apoptotic death of Eµ-Myc; Rock1 NC cells generates a proliferation-suppressive microenvironment in bone marrows that reduces cell numbers and prolongs B cell lymphoma mouse survival.


Assuntos
Caspases , Linfoma de Células B , Proteínas Proto-Oncogênicas c-myc , Quinases Associadas a rho , Animais , Quinases Associadas a rho/metabolismo , Linfoma de Células B/patologia , Linfoma de Células B/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Caspases/metabolismo , Macrófagos/metabolismo , Apoptose , Camundongos , Análise de Sobrevida , Camundongos Transgênicos , Células da Medula Óssea/metabolismo , Camundongos Endogâmicos C57BL , Ciclo Celular
16.
Biochem Soc Trans ; 41(4): 1096-100, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23863185

RESUMO

Tribbles are members of the pseudokinase family of proteins, with no associated kinase activity detectable to date. As tribbles appear not to function as kinases, there has been debate surrounding their functional classification. Tribbles have been proposed to function as adaptor molecules facilitating degradation of their target proteins. Tribbles have also been proposed to mediate signalling changes to MAPK (mitogen-activated protein kinase) cascades and also to function as decoy kinases interfering with the activity of known kinases. The present review discusses the functionally divergent roles of tribbles as molecular adaptors mediating degradation, changes to signalling cascades and action as decoy kinases.


Assuntos
Proteínas Quinases/metabolismo , Animais , Humanos , Proteínas Quinases/química , Proteínas Quinases/genética , Proteólise , Transdução de Sinais
17.
Brain Behav Immun ; 33: 7-13, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23510989

RESUMO

Adult hippocampal neurogenesis is modulated by a number of intrinsic and extrinsic factors including local signalling molecules, exercise, aging and inflammation. Inflammation is also a major contributor to several hippocampal-associated disorders. Interleukin-1beta (IL-1ß) is the most predominant pro-inflammatory cytokine in the brain, and an increase in its concentration is known to decrease the proliferation of both embryonic and adult hippocampal neural precursor cells (NPCs). Recent research has focused on the role of nuclear receptors as intrinsic regulators of neurogenesis, and it is now established that the orphan nuclear receptor TLX is crucial in maintaining the NPC pool in neurogenic brain regions. To better understand the involvement of TLX in IL-1ß-mediated effects on hippocampal NPC proliferation, we examined hippocampal NPC proliferation and TLX expression in response to IL-1ß treatment in an adult rat hippocampal neurosphere culture system. We demonstrate that IL-1ß reduced the proliferation of hippocampal NPCs and TLX expression in a dose and time-dependent manner and that co-treatment with IL-1ß receptor antagonist or IL-1 receptor siRNA prevented these effects. We also report a dose-dependent effect of IL-1ß on the composition of cell phenotypes in the culture and on expression of TLX in these cells. This study thus provides evidence of an involvement of TLX in IL-1ß-induced changes in adult hippocampal neurogenesis, and offers mechanistic insight into disorders in which neuroinflammation and alterations in neurogenesis are characteristic features.


Assuntos
Proliferação de Células , Giro Denteado/imunologia , Interleucina-1beta/fisiologia , Inibição Neural/imunologia , Células-Tronco Neurais/imunologia , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Senescência Celular/genética , Senescência Celular/fisiologia , Giro Denteado/citologia , Giro Denteado/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Células-Tronco Neurais/citologia , Neurogênese/imunologia , Ratos
18.
J Exp Med ; 203(10): 2239-45, 2006 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-16966428

RESUMO

Genetic inactivation of Notch signaling in CD4(-)CD8(-) double-negative (DN) thymocytes was previously shown to impair T cell receptor (TCR) gene rearrangement and to cause a partial block in CD4(+)CD8(+) double-positive (DP) thymocyte development in mice. In contrast, in vitro cultures suggested that Notch was absolutely required for the generation of DP thymocytes independent of pre-TCR expression and activity. To resolve the respective role of Notch and the pre-TCR, we inhibited Notch-mediated transcriptional activation in vivo with a green fluorescent protein-tagged dominant-negative Mastermind-like 1 (DNMAML) that allowed us to track single cells incapable of Notch signaling. DNMAML expression in DN cells led to decreased production of DP thymocytes but only to a modest decrease in intracellular TCRbeta expression. DNMAML attenuated the pre-TCR-associated increase in cell size and CD27 expression. TCRbeta or TCRalphabeta transgenes failed to rescue DNMAML-related defects. Intrathymic injections of DNMAML(-) or DNMAML(+) DN thymocytes revealed a complete DN/DP transition block, with production of DNMAML(+) DP thymocytes only from cells undergoing late Notch inactivation. These findings indicate that the Notch requirement during the beta-selection checkpoint in vivo is absolute and independent of the pre-TCR, and it depends on transcriptional activation by Notch via the CSL/RBP-J-MAML complex.


Assuntos
Diferenciação Celular/imunologia , Rearranjo Gênico/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores Notch/imunologia , Transdução de Sinais/imunologia , Linfócitos T/citologia , Timo/citologia , Animais , Imunoprecipitação da Cromatina , Primers do DNA , Citometria de Fluxo , Proteínas de Fluorescência Verde , Camundongos , Proteínas Nucleares/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Fatores de Transcrição/metabolismo , Ativação Transcricional/imunologia
19.
Br J Haematol ; 158(5): 626-34, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22775572

RESUMO

TRIB2 is a potent oncogene, elevated in a subset of human acute myeloid leukaemias (AML) with a mixed myeloid/lymphoid phenotype and NOTCH1 mutations. Although rare in AML, activating NOTCH1 mutations occur in 50% of all T cell acute lymphoblastic leukaemias (T-ALL). TRIB2 is a NOTCH1 target gene that functions in the degradation of key proteins and modulation of MAPK signalling pathways, implicated in haematopoietic cell survival and proliferation. This study showed that TRIB2 expression level is highest in the lymphoid compartment of normal haematopoietic cells, specifically in T cells. Analysis of TRIB2 expression across 16 different subtypes of human leukaemia demonstrated that TRIB2 expression was higher in ALL phenotypes versus all other phenotypes including AML, chronic lymphocytic leukaemia (CLL), myelodysplastic syndrome (MDS) and chronic myeloid leukaemia (CML). A T cell profile was distinguished by high TRIB2 expression in normal and malignant haematopoiesis. High TRIB2 expression was seen in T-ALL with normal karyotype and correlated with NOTCH signalling pathways. High TRIB2 expression correlated with NOTCH1/FBXW7 mutations in a paediatric T-ALL cohort, strongly linking NOTCH1 activation and high TRIB2 expression in paediatric T-ALL. The relationship between TRIB2 and T cell signalling pathways uniquely identifies leukaemia subtypes and will be useful in the advancement of our understanding of T cell and ALL biology.


Assuntos
Hematopoese/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/metabolismo , Adolescente , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Proteínas de Ciclo Celular/genética , Criança , Pré-Escolar , Proteínas F-Box/genética , Proteína 7 com Repetições F-Box-WD , Feminino , Humanos , Lactente , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cariótipo , Masculino , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor Notch1/genética , Transdução de Sinais , Linfócitos T/metabolismo , Ubiquitina-Proteína Ligases/genética , Adulto Jovem
20.
Blood ; 116(23): 4948-57, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-20805362

RESUMO

Tribbles homolog 2 (Trib2) is a pseudokinase that induces acute myelogenous leukemia (AML) in mice and is highly expressed in a subset of human AML. Trib2 has 3 distinct regions, a proline-rich N-terminus, a serine/threonine kinase homology domain, and a C-terminal constitutive photomorphogenesis 1 (COP1)-binding domain. We performed a structure-function analysis of Trib2 using in vitro and in vivo assays. The N-terminus was not required for Trib2-induced AML. Deletion or mutation of the COP1-binding site abrogated the ability of Trib2 to degrade CCAAT/enhancer-binding protein-α (C/EBP-α), block granulocytic differentiation, and to induce AML in vivo. Furthermore, COP1 knockdown inhibited the ability of Trib2 to degrade C/EBP-α, showing that it is important for mediating Trib2 activity. We also show that the Trib2 kinase domain is essential for its function. Trib2 contains variant catalytic loop sequences, compared with conventional kinases, that we show are necessary for Trib2 activity. The kinase domain mutants bind, but cannot efficiently degrade, C/EBP-α. Together, our data demonstrate that Trib2 can bind both COP1 and C/EBP-α, leading to degradation of C/EBP-α. Identification of the functional regions of Trib2 that are essential to its oncogenic role provides the basis for developing inhibitors that will block Trib functions in cancer.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Transformação Celular Neoplásica/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Western Blotting , Separação Celular , Transformação Celular Neoplásica/metabolismo , Citometria de Fluxo , Humanos , Imunoprecipitação , Camundongos , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA