Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Annu Rev Microbiol ; 73: 407-433, 2019 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-31500538

RESUMO

Chromatic acclimation (CA) encompasses a diverse set of molecular processes that involve the ability of cyanobacterial cells to sense ambient light colors and use this information to optimize photosynthetic light harvesting. The six known types of CA, which we propose naming CA1 through CA6, use a range of molecular mechanisms that likely evolved independently in distantly related lineages of the Cyanobacteria phylum. Together, these processes sense and respond to the majority of the photosynthetically relevant solar spectrum, suggesting that CA provides fitness advantages across a broad range of light color niches. The recent discoveries of several new CA types suggest that additional CA systems involving additional light colors and molecular mechanisms will be revealed in coming years. Here we provide a comprehensive overview of the currently known types of CA and summarize the molecular details that underpin CA regulation.


Assuntos
Adaptação Fisiológica , Cianobactérias/fisiologia , Cianobactérias/efeitos da radiação , Luz , Fotossíntese , Cianobactérias/genética , Regulação Bacteriana da Expressão Gênica , Aptidão Genética
2.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627406

RESUMO

Marine Synechococcus cyanobacteria owe their ubiquity in part to the wide pigment diversity of their light-harvesting complexes. In open ocean waters, cells predominantly possess sophisticated antennae with rods composed of phycocyanin and two types of phycoerythrins (PEI and PEII). Some strains are specialized for harvesting either green or blue light, while others can dynamically modify their light absorption spectrum to match the dominant ambient color. This process, called type IV chromatic acclimation (CA4), has been linked to the presence of a small genomic island occurring in two configurations (CA4-A and CA4-B). While the CA4-A process has been partially characterized, the CA4-B process has remained an enigma. Here we characterize the function of two members of the phycobilin lyase E/F clan, MpeW and MpeQ, in Synechococcus sp. strain A15-62 and demonstrate their critical role in CA4-B. While MpeW, encoded in the CA4-B island and up-regulated in green light, attaches the green light-absorbing chromophore phycoerythrobilin to cysteine-83 of the PEII α-subunit in green light, MpeQ binds phycoerythrobilin and isomerizes it into the blue light-absorbing phycourobilin at the same site in blue light, reversing the relationship of MpeZ and MpeY in the CA4-A strain RS9916. Our data thus reveal key molecular differences between the two types of chromatic acclimaters, both highly abundant but occupying distinct complementary ecological niches in the ocean. They also support an evolutionary scenario whereby CA4-B island acquisition allowed former blue light specialists to become chromatic acclimaters, while former green light specialists would have acquired this capacity by gaining a CA4-A island.


Assuntos
Proteínas de Bactérias/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Liases/metabolismo , Ficocianina/biossíntese , Ficoeritrina/biossíntese , Pigmentos Biológicos/biossíntese , Synechococcus/metabolismo , Aclimatação , Organismos Aquáticos , Proteínas de Bactérias/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ilhas Genômicas , Luz , Complexos de Proteínas Captadores de Luz/genética , Liases/genética , Ficobilinas/biossíntese , Ficobilinas/genética , Ficocianina/genética , Ficoeritrina/genética , Filogenia , Pigmentos Biológicos/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Synechococcus/classificação , Synechococcus/genética , Synechococcus/efeitos da radiação , Urobilina/análogos & derivados , Urobilina/biossíntese , Urobilina/genética
3.
Proc Natl Acad Sci U S A ; 116(13): 6457-6462, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30846551

RESUMO

Marine Synechococcus, a globally important group of cyanobacteria, thrives in various light niches in part due to its varied photosynthetic light-harvesting pigments. Many Synechococcus strains use a process known as chromatic acclimation to optimize the ratio of two chromophores, green-light-absorbing phycoerythrobilin (PEB) and blue-light-absorbing phycourobilin (PUB), within their light-harvesting complexes. A full mechanistic understanding of how Synechococcus cells tune their PEB to PUB ratio during chromatic acclimation has not yet been obtained. Here, we show that interplay between two enzymes named MpeY and MpeZ controls differential PEB and PUB covalent attachment to the same cysteine residue. MpeY attaches PEB to the light-harvesting protein MpeA in green light, while MpeZ attaches PUB to MpeA in blue light. We demonstrate that the ratio of mpeY to mpeZ mRNA determines if PEB or PUB is attached. Additionally, strains encoding only MpeY or MpeZ do not acclimate. Examination of strains of Synechococcus isolated from across the globe indicates that the interplay between MpeY and MpeZ uncovered here is a critical feature of chromatic acclimation for marine Synechococcus worldwide.


Assuntos
Aclimatação/fisiologia , Aclimatação/efeitos da radiação , Adaptação Ocular/fisiologia , Adaptação Ocular/efeitos da radiação , Cor , Synechococcus/enzimologia , Synechococcus/metabolismo , Aclimatação/genética , Adaptação Ocular/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica , Genes Bacterianos/genética , Liases/metabolismo , Mutação , Ficobilinas , Ficoeritrina , Proteínas Recombinantes , Água do Mar/microbiologia , Synechococcus/genética , Synechococcus/efeitos da radiação , Urobilina/análogos & derivados
4.
Proc Natl Acad Sci U S A ; 115(9): E2010-E2019, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440402

RESUMO

Marine Synechococcus cyanobacteria are major contributors to global oceanic primary production and exhibit a unique diversity of photosynthetic pigments, allowing them to exploit a wide range of light niches. However, the relationship between pigment content and niche partitioning has remained largely undetermined due to the lack of a single-genetic marker resolving all pigment types (PTs). Here, we developed and employed a robust method based on three distinct marker genes (cpcBA, mpeBA, and mpeW) to estimate the relative abundance of all known Synechococcus PTs from metagenomes. Analysis of the Tara Oceans dataset allowed us to reveal the global distribution of Synechococcus PTs and to define their environmental niches. Green-light specialists (PT 3a) dominated in warm, green equatorial waters, whereas blue-light specialists (PT 3c) were particularly abundant in oligotrophic areas. Type IV chromatic acclimaters (CA4-A/B), which are able to dynamically modify their light absorption properties to maximally absorb green or blue light, were unexpectedly the most abundant PT in our dataset and predominated at depth and high latitudes. We also identified populations in which CA4 might be nonfunctional due to the lack of specific CA4 genes, notably in warm high-nutrient low-chlorophyll areas. Major ecotypes within clades I-IV and CRD1 were preferentially associated with a particular PT, while others exhibited a wide range of PTs. Altogether, this study provides important insights into the ecology of Synechococcus and highlights the complex interactions between vertical phylogeny, pigmentation, and environmental parameters that shape Synechococcus community structure and evolution.


Assuntos
Aclimatação , Cianobactérias/genética , Oceanos e Mares , Ficobilissomas/fisiologia , Água do Mar/microbiologia , Synechococcus/genética , Clorofila/química , Cor , Simulação por Computador , Ecossistema , Ecótipo , Luz , Funções Verossimilhança , Metagenoma , Fotossíntese/fisiologia , Filogenia , Pigmentação
5.
J Biol Chem ; 294(11): 3987-3999, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30670589

RESUMO

Phycoerythrin (PE) is a green light-absorbing protein present in the light-harvesting complex of cyanobacteria and red algae. The spectral characteristics of PE are due to its prosthetic groups, or phycoerythrobilins (PEBs), that are covalently attached to the protein chain by specific bilin lyases. Only two PE lyases have been identified and characterized so far, and the other bilin lyases are unknown. Here, using in silico analyses, markerless deletion, biochemical assays with purified and recombinant proteins, and site-directed mutagenesis, we examined the role of a putative lyase-encoding gene, cpeF, in the cyanobacterium Fremyella diplosiphon. Analyzing the phenotype of the cpeF deletion, we found that cpeF is required for proper PE biogenesis, specifically for ligation of the doubly linked PEB to Cys-48/Cys-59 residues of the CpeB subunit of PE. We also show that in a heterologous host, CpeF can attach PEB to Cys-48/Cys-59 of CpeB, but only in the presence of the chaperone-like protein CpeZ. Additionally, we report that CpeF likely ligates the A ring of PEB to Cys-48 prior to the attachment of the D ring to Cys-59. We conclude that CpeF is the bilin lyase responsible for attachment of the doubly ligated PEB to Cys-48/Cys-59 of CpeB and together with other specific bilin lyases contributes to the post-translational modification and assembly of PE into mature light-harvesting complexes.


Assuntos
Cianobactérias/metabolismo , Ficobilinas/metabolismo , Ficoeritrina/metabolismo , Cianobactérias/química , Ficobilinas/química , Ficoeritrina/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(21): 6077-82, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27152022

RESUMO

The evolutionary success of marine Synechococcus, the second-most abundant phototrophic group in the marine environment, is partly attributable to this group's ability to use the entire visible spectrum of light for photosynthesis. This group possesses a remarkable diversity of light-harvesting pigments, and most of the group's members are orange and pink because of their use of phycourobilin and phycoerythrobilin chromophores, which are attached to antennae proteins called phycoerythrins. Many strains can alter phycoerythrin chromophore ratios to optimize photon capture in changing blue-green environments using type IV chromatic acclimation (CA4). Although CA4 is common in most marine Synechococcus lineages, the regulation of this process remains unexplored. Here, we show that a widely distributed genomic island encoding tandem master regulators named FciA (for type four chromatic acclimation island) and FciB plays a central role in controlling CA4. FciA and FciB have diametric effects on CA4. Interruption of fciA causes a constitutive green light phenotype, and interruption of fciB causes a constitutive blue light phenotype. These proteins regulate all of the molecular responses occurring during CA4, and the proteins' activity is apparently regulated posttranscriptionally, although their cellular ratio appears to be critical for establishing the set point for the blue-green switch in ecologically relevant light environments. Surprisingly, FciA and FciB coregulate only three genes within the Synechococcus genome, all located within the same genomic island as fciA and fciB These findings, along with the widespread distribution of strains possessing this island, suggest that horizontal transfer of a small, self-regulating DNA region has conferred CA4 capability to marine Synechococcus throughout many oceanic areas.


Assuntos
Aclimatação/fisiologia , Organismos Aquáticos , Proteínas de Bactérias , Ilhas Genômicas , Ficoeritrina , Synechococcus , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ficoeritrina/genética , Ficoeritrina/metabolismo , Synechococcus/genética , Synechococcus/metabolismo
7.
Proc Natl Acad Sci U S A ; 110(31): 12834-9, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23858449

RESUMO

Photoreceptors are biologically important for sensing changes in the color and intensity of ambient light and, for photosynthetic organisms, processing this light information to optimize food production through photosynthesis. Cyanobacteria are an evolutionarily and ecologically important prokaryotic group of oxygenic photosynthesizers that contain cyanobacteriochrome (CBCR) photoreceptors, whose family members sense nearly the entire visible spectrum of light colors. Some cyanobacteria contain 12 to 15 different CBCRs, and many family members contain multiple light-sensing domains. However, the complex interactions that must be occurring within and between these photoreceptors remain unexplored. Here we describe the regulation and photobiology of a unique CBCR called IflA (influenced by far-red light), demonstrating that a second CBCR called RcaE strongly regulates IflA abundance and that IflA uses two distinct photosensory domains to respond to four different light colors: blue, green, red, and far-red. The absorption of red or far-red light by one domain affects the conformation of the other domain, and the rate of relaxation of one of these domains is influenced by the conformation of the other. Deletion of iflA results in delayed growth at low cell density, suggesting that IflA accelerates growth under this condition, apparently by sensing the ratio of red to far-red light in the environment. The types of complex photobiological interactions described here, both between unrelated CBCR family members and within photosensory domains of a single CBCR, may be advantageous for species using these photoreceptors in aquatic environments, where light color ratios are influenced by many biotic and abiotic factors.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cor , Cianobactérias/genética , Deleção de Genes , Complexos de Proteínas Captadores de Luz/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína
8.
Proc Natl Acad Sci U S A ; 110(40): 16253-8, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24048028

RESUMO

Light-harvesting antennae are critical for collecting energy from sunlight and providing it to photosynthetic reaction centers. Their abundance and composition are tightly regulated to maintain efficient photosynthesis in changing light conditions. Many cyanobacteria alter their light-harvesting antennae in response to changes in ambient light-color conditions through the process of chromatic acclimation. The control of green light induction (Cgi) pathway is a light-color-sensing system that controls the expression of photosynthetic genes during chromatic acclimation, and while some evidence suggests that it operates via transcription attenuation, the components of this pathway have not been identified. We provide evidence that translation initiation factor 3 (IF3), an essential component of the prokaryotic translation initiation machinery that binds the 30S subunit and blocks premature association with the 50S subunit, is part of the control of green light induction pathway. Light regulation of gene expression has not been previously described for any translation initiation factor. Surprisingly, deletion of the IF3-encoding gene infCa was not lethal in the filamentous cyanobacterium Fremyella diplosiphon, and its genome was found to contain a second, redundant, highly divergent infC gene which, when deleted, had no effect on photosynthetic gene expression. Either gene could complement an Escherichia coli infC mutant and thus both encode bona fide IF3s. Analysis of prokaryotic and eukaryotic genome databases established that multiple infC genes are present in the genomes of diverse groups of bacteria and land plants, most of which do not undergo chromatic acclimation. This suggests that IF3 may have repeatedly evolved important roles in the regulation of gene expression in both prokaryotes and eukaryotes.


Assuntos
Cianobactérias/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Transdução de Sinal Luminoso/fisiologia , Luz , Família Multigênica/genética , Fotossíntese/fisiologia , Fator de Iniciação 3 em Procariotos/metabolismo , Sequência de Bases , Biologia Computacional , Primers do DNA/genética , Escherichia coli , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Transdução de Sinal Luminoso/genética , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Fator de Iniciação 3 em Procariotos/genética , Análise de Sequência de DNA , Especificidade da Espécie
9.
Biochemistry ; 54(20): 3151-63, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25928281

RESUMO

Domain swapping that contributes to the stability of biologically crucial multisubunit complexes has been implicated in protein oligomerization. In the case of membrane protein assemblies, domain swapping of the iron-sulfur protein (ISP) subunit occurs in the hetero-oligomeric cytochrome b6f and bc1 complexes, which are organized as symmetric dimers that generate the transmembrane proton electrochemical gradient utilized for ATP synthesis. In these complexes, the ISP C-terminal predominantly ß-sheet extrinsic domain containing the redox-active [2Fe-2S] cluster resides on the electrochemically positive side of each monomer in the dimeric complex. This domain is bound to the membrane sector of the complex through an N-terminal transmembrane α-helix that is "swapped' to the other monomer of the complex where it spans the complex and the membrane. Detailed analysis of the function and structure of the b6f complex isolated from the cyanobacterium Fremyella diplosiphon SF33 shows that the domain-swapped ISP structure is necessary for function but is not necessarily essential for maintenance of the dimeric structure of the complex. On the basis of crystal structures of the cytochrome complex, the stability of the cytochrome dimer is attributed to specific intermonomer protein-protein and protein-lipid hydrophobic interactions. The geometry of the domain-swapped ISP structure is proposed to be a consequence of the requirement that the anchoring helix of the ISP not perturb the heme organization or quinone channel in the conserved core of each monomer.


Assuntos
Proteínas de Bactérias/química , Cianobactérias , Citocromos b6/química , Lipoproteínas/química , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína
10.
Photosynth Res ; 126(1): 147-59, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25630975

RESUMO

Initiation is a key control point for the regulation of translation in prokaryotes and prokaryotic-like translation systems such as those in plant chloroplasts. Genome sequencing and biochemical studies are increasingly demonstrating differences in many aspects of translation between well-studied microbes such as Escherichia coli and lesser studied groups such as cyanobacteria. Analyses of chloroplast translation have revealed its prokaryotic origin but also uncovered many unique aspects that do not exist in E. coli. Recently, a novel form of posttranscriptional regulation by light color was discovered in the filamentous cyanobacterium Fremyella diplosiphon that requires a putative stem-loop and involves the use of two different prokaryotic translation initiation factor 3s (IF3s). Multiple (up to five) putative IF3s have now been found to be encoded in 22 % of sequenced cyanobacterial genomes and 26 % of plant nuclear genomes. The lack of similar light-color regulation of gene expression in most of these species suggests that IF3s play roles in regulating gene expression in response to other environmental and developmental cues. In the plant Arabidopsis, two nuclear-encoded IF3s have been shown to localize to the chloroplasts, and the mRNA levels encoding these vary significantly in certain organ and tissue types and during several phases of development. Collectively, the accumulated data suggest that in about one quarter of photosynthetic prokaryotes and eukaryotes, IF3 gene families are used to regulate gene expression in addition to their traditional roles in translation initiation. Models for how this might be accomplished in prokaryotes versus eukaryotic plastids are presented.


Assuntos
Cianobactérias/genética , Regulação Bacteriana da Expressão Gênica , Genes de Cloroplastos , Fator de Iniciação 3 em Procariotos/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Cianobactérias/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Iniciação Traducional da Cadeia Peptídica/fisiologia
11.
Proc Natl Acad Sci U S A ; 109(49): 20136-41, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23161909

RESUMO

The marine cyanobacterium Synechococcus is the second most abundant phytoplanktonic organism in the world's oceans. The ubiquity of this genus is in large part due to its use of a diverse set of photosynthetic light-harvesting pigments called phycobiliproteins, which allow it to efficiently exploit a wide range of light colors. Here we uncover a pivotal molecular mechanism underpinning a widespread response among marine Synechococcus cells known as "type IV chromatic acclimation" (CA4). During this process, the pigmentation of the two main phycobiliproteins of this organism, phycoerythrins I and II, is reversibly modified to match changes in the ambient light color so as to maximize photon capture for photosynthesis. CA4 involves the replacement of three molecules of the green light-absorbing chromophore phycoerythrobilin with an equivalent number of the blue light-absorbing chromophore phycourobilin when cells are shifted from green to blue light, and the reverse after a shift from blue to green light. We have identified and characterized MpeZ, an enzyme critical for CA4 in marine Synechococcus. MpeZ attaches phycoerythrobilin to cysteine-83 of the α-subunit of phycoerythrin II and isomerizes it to phycourobilin. mpeZ RNA is six times more abundant in blue light, suggesting that its proper regulation is critical for CA4. Furthermore, mpeZ mutants fail to normally acclimate in blue light. These findings provide insights into the molecular mechanisms controlling an ecologically important photosynthetic process and identify a unique class of phycoerythrin lyase/isomerases, which will further expand the already widespread use of phycoerythrin in biotechnology and cell biology applications.


Assuntos
Aclimatação/fisiologia , Pigmentos Biliares/metabolismo , Luz , Liases/metabolismo , Ficoeritrina/metabolismo , Synechococcus/fisiologia , Aclimatação/efeitos da radiação , Biotecnologia/métodos , Cromatografia Líquida de Alta Pressão , Cor , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Fluorescência , Oceano Índico , Plasmídeos/genética , Synechococcus/enzimologia , Espectrometria de Massas em Tandem
12.
Proc Natl Acad Sci U S A ; 108(45): 18542-7, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-22042852

RESUMO

The colorful process of chromatic acclimation allows many cyanobacteria to change their pigmentation in response to ambient light color changes. In red light, cells produce red-absorbing phycocyanin (PC), whereas in green light, green-absorbing phycoerythrin (PE) is made. Controlling these pigment levels increases fitness by optimizing photosynthetic activity in different light color environments. The light color sensory system controlling PC expression is well understood, but PE regulation has not been resolved. In the filamentous cyanobacterium Fremyella diplosiphon UTEX 481, two systems control PE synthesis in response to light color. The first is the Rca pathway, a two-component system controlled by a phytochrome-class photoreceptor, which transcriptionally represses cpeCDESTR (cpeC) expression during growth in red light. The second is the Cgi pathway, which has not been characterized. We determined that the Cgi system also regulates PE synthesis by repressing cpeC expression in red light, but acts posttranscriptionally, requiring the region upstream of the CpeC translation start codon. cpeC RNA stability was comparable in F. diplosiphon cells grown in red and green light, and a short transcript that included the 5' region of cpeC was detected, suggesting that the Cgi system operates by transcription attenuation. The roles of four predicted stem-loop structures within the 5' region of cpeC RNA were analyzed. The putative stem-loop 31 nucleotides upstream of the translation start site was required for Cgi system function. Thus, the Cgi system appears to be a unique type of signal transduction pathway in which the attenuation of cpeC transcription is regulated by light color.


Assuntos
Cianobactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Luz , Ficoeritrina/genética
13.
Sci Rep ; 13(1): 19944, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968300

RESUMO

Chitin is an abundant, carbon-rich polymer in the marine environment. Chitinase activity has been detected in spent media of Synechococcus WH7803 cultures-yet it was unclear which specific enzymes were involved. Here we delivered a CRISPR tool into the cells via electroporation to generate loss-of-function mutants of putative candidates and identified ChiA as the enzyme required for the activity detected in the wild type.


Assuntos
Quitinases , Synechococcus , Synechococcus/genética , Synechococcus/metabolismo , Quitina/metabolismo , Quitinases/genética , Quitinases/metabolismo
14.
mBio ; 13(4): e0151122, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35856560

RESUMO

Marine cyanobacteria depend on light for photosynthesis, restricting their growth to the photic zone. The upper part of this layer is exposed to strong UV radiation (UVR), a DNA mutagen that can harm these microorganisms. To thrive in UVR-rich waters, marine cyanobacteria employ photoprotection strategies that are still not well defined. Among these are photolyases, light-activated enzymes that repair DNA dimers generated by UVR. Our analysis of genomes of 81 strains of Synechococcus, Cyanobium, and Prochlorococcus isolated from the world's oceans shows that they possess up to five genes encoding different members of the photolyase/cryptochrome family, including a photolyase with a novel domain arrangement encoded by either one or two separate genes. We disrupted the putative photolyase-encoding genes in Synechococcus sp. strain RS9916 and discovered that each gene contributes to the overall capacity of this organism to survive UVR. Additionally, each conferred increased survival after UVR exposure when transformed into Escherichia coli lacking its photolyase and SOS response. Our results provide the first evidence that this large set of photolyases endows Synechococcus with UVR resistance that is far superior to that of E. coli, but that, unlike for E. coli, these photolyases provide Synechococcus with the vast majority of its UVR tolerance. IMPORTANCE Cells use DNA photolyases to protect their DNA from the damaging effects of UV radiation. Marine cyanobacteria possess many genes that appear to encode photolyases, but the function of the proteins encoded by these genes is unclear. The study uses comparative genomics and molecular genetic approaches to describe and characterize the roles of these proteins in DNA damage repair in the marine cyanobacterium Synechococcus. This study identifies the important role of DNA photolyases in DNA repair for these cells and describes a previously undescribed structural class of DNA of these enzymes.


Assuntos
Desoxirribodipirimidina Fotoliase , Synechococcus , DNA , Desoxirribodipirimidina Fotoliase/genética , Escherichia coli/genética , Synechococcus/genética , Synechococcus/metabolismo , Raios Ultravioleta
15.
Genome Biol Evol ; 14(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35276007

RESUMO

Synechococcus cyanobacteria are ubiquitous and abundant in the marine environment and contribute to an estimated 16% of the ocean net primary productivity. Their light-harvesting complexes, called phycobilisomes (PBS), are composed of a conserved allophycocyanin core, from which radiates six to eight rods with variable phycobiliprotein and chromophore content. This variability allows Synechococcus cells to optimally exploit the wide variety of spectral niches existing in marine ecosystems. Seven distinct pigment types or subtypes have been identified so far in this taxon based on the phycobiliprotein composition and/or the proportion of the different chromophores in PBS rods. Most genes involved in their biosynthesis and regulation are located in a dedicated genomic region called the PBS rod region. Here, we examine the variability of gene content and organization of this genomic region in a large set of sequenced isolates and natural populations of Synechococcus representative of all known pigment types. All regions start with a tRNA-PheGAA and some possess mobile elements for DNA integration and site-specific recombination, suggesting that their genomic variability relies in part on a "tycheposon"-like mechanism. Comparison of the phylogenies obtained for PBS and core genes revealed that the evolutionary history of PBS rod genes differs from the core genome and is characterized by the co-existence of different alleles and frequent allelic exchange. We propose a scenario for the evolution of the different pigment types and highlight the importance of incomplete lineage sorting in maintaining a wide diversity of pigment types in different Synechococcus lineages despite multiple speciation events.


Assuntos
Synechococcus , Ecossistema , Ficobiliproteínas/genética , Ficobilissomas/genética , Filogenia , Synechococcus/genética
16.
J Bacteriol ; 193(6): 1449-60, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21239582

RESUMO

Sulfur is an essential nutrient that can exist at growth-limiting concentrations in freshwater environments. The freshwater cyanobacterium Fremyella diplosiphon (also known as Tolypothrix sp. PCC 7601) is capable of remodeling the composition of its light-harvesting antennae, or phycobilisomes, in response to changes in the sulfur levels in its environment. Depletion of sulfur causes these cells to cease the accumulation of two forms of a major phycobilisome protein called phycocyanin and initiate the production of a third form of phycocyanin, which possesses a minimal number of sulfur-containing amino acids. Since phycobilisomes make up approximately 50% of the total protein in these cells, this elemental sparing response has the potential to significantly influence the fitness of this species under low-sulfur conditions. This response is specific for sulfate and occurs over the physiological range of sulfate concentrations likely to be encountered by this organism in its natural environment. F. diplosiphon has two separate sulfur deprivation responses, with low sulfate levels activating the phycobilisome remodeling response and low sulfur levels activating the chlorosis or bleaching response. The phycobilisome remodeling response results from changes in RNA abundance that are regulated at both the transcriptional and posttranscriptional levels. The potential of this response, and the more general bleaching response of cyanobacteria, to provide sulfur-containing amino acids during periods of sulfur deprivation is examined.


Assuntos
Cianobactérias/genética , Cianobactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Sulfatos/metabolismo , Transcrição Gênica , Ficobilissomas/metabolismo , Ficocianina/metabolismo , Estabilidade de RNA , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo
17.
Annu Rev Plant Biol ; 57: 127-50, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16669758

RESUMO

The acclimation of photosynthetic organisms to changes in light color is ubiquitous and may be best illustrated by the colorful process of complementary chromatic adaptation (CCA). During CCA, cyanobacterial cells change from brick red to bright blue green, depending on their light color environment. The apparent simplicity of this spectacular, photoreversible event belies the complexity of the cellular response to changes in light color. Recent results have shown that the regulation of CCA is also complex and involves at least three pathways. One is controlled by a phytochrome-class photoreceptor that is responsive to green and red light and a complex two-component signal transduction pathway, whereas another is based on sensing redox state. Studies of CCA are uncovering the strategies used by photosynthetic organisms during light acclimation and the means by which they regulate these responses.


Assuntos
Adaptação Fisiológica , Cor , Cianobactérias/fisiologia , Fotossíntese
18.
J Bacteriol ; 192(22): 5923-33, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20833804

RESUMO

Complementary chromatic acclimation (CCA) allows many cyanobacteria to change the composition of their light-harvesting antennae for maximal absorption of different wavelengths of light. In the freshwater species Fremyella diplosiphon, this process is controlled by the ratio of red to green light and allows the differential regulation of two subsets of genes in the genome. This response to ambient light color is controlled in part by a two-component system that includes a phytochrome class photoreceptor and a response regulator with an OmpR/PhoB class DNA binding domain called RcaC. During growth in red light, RcaC is able to simultaneously activate expression of red light-induced genes and repress expression of green light-induced genes through binding to the L box promoter element. Here we investigate how the L box functions as both an activator and a repressor under the same physiological conditions by analyzing the effects of changing the position, orientation, and sequence of the L box. We demonstrate that changes in the local sequences surrounding the L box affect the strength of its activity and that the activating and repressing functions of the L box are orientation dependent. Also, the spacing between the L box and the transcription start site is critical for it to work as an activator, while its repressing role during light regulation requires additional upstream and downstream DNA sequence elements. The latter result suggests that the repressing function of RcaC requires it to operate in association with multiple additional DNA binding proteins, at least one of which is functioning as an activator.


Assuntos
Proteínas de Bactérias/metabolismo , Cor , Cianobactérias/efeitos da radiação , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica , Luz , Sequência de Bases , Sítios de Ligação , Regiões Promotoras Genéticas , Ligação Proteica , Sítio de Iniciação de Transcrição
19.
BMC Microbiol ; 10: 204, 2010 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-20670397

RESUMO

BACKGROUND: The marine cyanobacterium Prochlorococcus is very abundant in warm, nutrient-poor oceanic areas. The upper mixed layer of oceans is populated by high light-adapted Prochlorococcus ecotypes, which despite their tiny genome (approximately 1.7 Mb) seem to have developed efficient strategies to cope with stressful levels of photosynthetically active and ultraviolet (UV) radiation. At a molecular level, little is known yet about how such minimalist microorganisms manage to sustain high growth rates and avoid potentially detrimental, UV-induced mutations to their DNA. To address this question, we studied the cell cycle dynamics of P. marinus PCC9511 cells grown under high fluxes of visible light in the presence or absence of UV radiation. Near natural light-dark cycles of both light sources were obtained using a custom-designed illumination system (cyclostat). Expression patterns of key DNA synthesis and repair, cell division, and clock genes were analyzed in order to decipher molecular mechanisms of adaptation to UV radiation. RESULTS: The cell cycle of P. marinus PCC9511 was strongly synchronized by the day-night cycle. The most conspicuous response of cells to UV radiation was a delay in chromosome replication, with a peak of DNA synthesis shifted about 2 h into the dark period. This delay was seemingly linked to a strong downregulation of genes governing DNA replication (dnaA) and cell division (ftsZ, sepF), whereas most genes involved in DNA repair (such as recA, phrA, uvrA, ruvC, umuC) were already activated under high visible light and their expression levels were only slightly affected by additional UV exposure. CONCLUSIONS: Prochlorococcus cells modified the timing of the S phase in response to UV exposure, therefore reducing the risk that mutations would occur during this particularly sensitive stage of the cell cycle. We identified several possible explanations for the observed timeshift. Among these, the sharp decrease in transcript levels of the dnaA gene, encoding the DNA replication initiator protein, is sufficient by itself to explain this response, since DNA synthesis starts only when the cellular concentration of DnaA reaches a critical threshold. However, the observed response likely results from a more complex combination of UV-altered biological processes.


Assuntos
Cromossomos Bacterianos/genética , Replicação do DNA/efeitos da radiação , Prochlorococcus/genética , Prochlorococcus/efeitos da radiação , Água do Mar/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo Celular/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Fotoperíodo , Prochlorococcus/citologia , Prochlorococcus/metabolismo , Raios Ultravioleta
20.
Biochim Biophys Acta Bioenerg ; 1861(12): 148284, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777305

RESUMO

Bilin lyases are enzymes which ligate linear tetrapyrrole chromophores to specific cysteine residues on light harvesting proteins present in cyanobacteria and red algae. The lyases responsible for chromophorylating the light harvesting protein phycoerythrin (PE) have not been fully characterized. In this study, we explore the role of CpeT, a putative bilin lyase, in the biosynthesis of PE in the cyanobacterium Fremyella diplosiphon. Recombinant protein studies show that CpeT alone can bind phycoerythrobilin (PEB), but CpeZ, a chaperone-like protein, is needed in order to correctly and efficiently attach PEB to the ß-subunit of PE. MS analyses of the recombinant ß-subunit of PE coexpressed with CpeT and CpeZ show that PEB is attached at Cys-165. Purified phycobilisomes from a cpeT knockout mutant and wild type (WT) samples from F. diplosiphon were analyzed and compared. The cpeT mutant contained much less PE and more phycocyanin than WT cells grown under green light, conditions which should maximize the production of PE. In addition, Northern blot analyses showed that the cpeCDESTR operon mRNAs were upregulated while the cpeBcpeA mRNAs were downregulated in the cpeT mutant strain when compared with WT, suggesting that CpeT may also play a direct or indirect regulatory role in transcription of these operons or their mRNA stability, in addition to its role as a PEB lyase for Cys-165 on ß-PE.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/enzimologia , Cisteína/metabolismo , Liases/metabolismo , Chaperonas Moleculares/metabolismo , Ficobilinas/metabolismo , Ficoeritrina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cianobactérias/genética , Deleção de Genes , Genes Bacterianos , Proteínas Mutantes/metabolismo , Óperon/genética , Peptídeos/química , Fenótipo , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA