Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 28(7): 9631-9641, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32225566

RESUMO

We demonstrate the first megahertz (MHz) repetition-rate, broadband terahertz (THz) source based on optical rectification in the organic crystal HMQ-TMS driven by a femtosecond Yb:fibre laser. Pumping at 1035 nm with 30 fs pulses, we achieve few-cycle THz emission with a smooth multi-octave spectrum that extends up to 6 THz at -30 dB, with conversion efficiencies reaching 10-4 and an average output power of up to 0.38 mW. We assess the thermal damage limit of the crystal and conclude a maximum fluence of ∼1.8 mJ·cm-2 at 10 MHz with a 1/e2 pump beam diameter of 0.10 mm. We compare the performance of HMQ-TMS with the prototypical inorganic crystal gallium phosphide (GaP), yielding a tenfold electric field increase with a peak on-axis field strength of 7 kV·cm-1 and almost double the THz bandwidth. Our results further demonstrate the suitability of organic crystals in combination with fibre lasers for repetition-rate scaling of broadband, high-power THz sources for time-domain spectroscopic applications.

2.
Opt Express ; 21(13): 15826-33, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23842368

RESUMO

We report a near-visible parametric wavelength converter comprising a polarization-maintaining photonic crystal fiber (PM-PCF) pumped by a highly versatile diode-seeded master-oscillator power amplifier system based around 1.06 µm. The device is broadly tunable in wavelength (0.74-0.81 µm), pulse duration (0.2-1.5 ns) and repetition rate (1-30 MHz). A maximum anti-Stokes slope conversion efficiency of 14.9% is achieved with corresponding anti-Stokes average output powers of 845 mW, at a wavelength of 0.775 µm.

3.
Opt Lett ; 36(19): 3792-4, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21964099

RESUMO

We report the development of a bismuth-doped fiber master oscillator power fiber amplifier system. The system operates at 1177 nm, producing 28 ps pulses at 9.11 MHz repetition rate, with an output power of 150 mW and a peak pulse power of 580 W. We subsequently frequency double the output, resulting in a picosecond pulsed visible source operating at 588.5 nm, with a maximum average output power of 13.7 mW.

4.
Sci Adv ; 6(33): eaba5029, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32851166

RESUMO

Recent advances in inkjet printing of two-dimensional (2D) crystals show great promise for next-generation printed electronics development. Printing nonuniformity, however, results in poor reproducibility in device performance and remains a major impediment to their large-scale manufacturing. At the heart of this challenge lies the coffee-ring effect (CRE), ring-shaped nonuniform deposits formed during postdeposition drying. We present an experimental study of the drying mechanism of a binary solvent ink formulation. We show that Marangoni-enhanced spreading in this formulation inhibits contact line pinning and deforms the droplet shape to naturally suppress the capillary flows that give rise to the CRE. This general formulation supports uniform deposition of 2D crystals and their derivatives, enabling scalable and even wafer-scale device fabrication, moving them closer to industrial-level additive manufacturing.

5.
Nat Commun ; 8(1): 278, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819184

RESUMO

Black phosphorus is a two-dimensional material of great interest, in part because of its high carrier mobility and thickness dependent direct bandgap. However, its instability under ambient conditions limits material deposition options for device fabrication. Here we show a black phosphorus ink that can be reliably inkjet printed, enabling scalable development of optoelectronic and photonic devices. Our binder-free ink suppresses coffee ring formation through induced recirculating Marangoni flow, and supports excellent consistency (< 2% variation) and spatial uniformity (< 3.4% variation), without substrate pre-treatment. Due to rapid ink drying (< 10 s at < 60 °C), printing causes minimal oxidation. Following encapsulation, the printed black phosphorus is stable against long-term (> 30 days) oxidation. We demonstrate printed black phosphorus as a passive switch for ultrafast lasers, stable against intense irradiation, and as a visible to near-infrared photodetector with high responsivities. Our work highlights the promise of this material as a functional ink platform for printed devices.Atomically thin black phosphorus shows promise for optoelectronics and photonics, yet its instability under environmental conditions and the lack of well-established large-area synthesis protocols hinder its applications. Here, the authors demonstrate a stable black phosphorus ink suitable for printed ultrafast lasers and photodetectors.

6.
ACS Nano ; 8(5): 4836-47, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24735347

RESUMO

We demonstrate wide-band ultrafast optical pulse generation at 1, 1.5, and 2 µm using a single-polymer composite saturable absorber based on double-wall carbon nanotubes (DWNTs). The freestanding optical quality polymer composite is prepared from nanotubes dispersed in water with poly(vinyl alcohol) as the host matrix. The composite is then integrated into ytterbium-, erbium-, and thulium-doped fiber laser cavities. Using this single DWNT-polymer composite, we achieve 4.85 ps, 532 fs, and 1.6 ps mode-locked pulses at 1066, 1559, and 1883 nm, respectively, highlighting the potential of DWNTs for wide-band ultrafast photonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA