Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675258

RESUMO

The type VI secretion system (T6SS) delivers enzymatic effectors into target cells to destroy them. Cells of the same strain protect themselves against effectors with immunity proteins that specifically inhibit effectors. Here, we report the identification and characterization of a Tle3 phospholipase effector and its cognate immunity protein Tli3-an outer membrane lipoprotein from adherent-invasive Escherichia coli (AIEC). Enzymatic assays demonstrate that purified Tle3AIEC has a phospholipase A1, and not A2, activity and that its toxicity is neutralized by the cognate immunity protein Tli3AIEC. Tli3AIEC binds Tle3 in a 1:1 stoichiometric ratio. Tle3AIEC, Tli3AIEC and the Tle3AIEC-Tli3AIEC complex were purified and subjected to crystallization. The Tle3AIEC-Tli3AIEC complex structure could not be solved by SeMet phasing, but only by molecular replacement when using an AlphaFold2 prediction model. Tle3AIEC exhibits an α/ß-hydrolase fold decorated by two protruding segments, including a N-terminus loop. Tli3AIEC displays a new fold of three stacked ß-sheets and a protruding loop that inserts in Tle3AIECcatalytic crevice. We showed, experimentally, that Tle3AIEC interacts with the VgrG AIEC cargo protein and AlphaFold2 prediction of the VgrGAIEC-Tle3AIEC complex reveals a strong interaction between the VgrGAIEC C-terminus adaptor and Tle3AIEC N-terminal loop.


Assuntos
Infecções por Escherichia coli , Sistemas de Secreção Tipo VI , Humanos , Escherichia coli/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Proteínas de Bactérias/metabolismo , Aderência Bacteriana , Proteínas Correpressoras/metabolismo
2.
Proc Natl Acad Sci U S A ; 113(3): 698-703, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26739560

RESUMO

Viruses are obligatory intracellular parasites that suffer strong evolutionary pressure from the host immune system. Rapidly evolving viral genomes can adapt to this pressure by acquiring genes that counteract host defense mechanisms. For example, many vertebrate DNA viruses have hijacked cellular genes encoding cytokines or cytokine receptors to disrupt host cell communication. Insect viruses express suppressors of RNA interference or apoptosis, highlighting the importance of these cell intrinsic antiviral mechanisms in invertebrates. Here, we report the identification and characterization of a family of proteins encoded by insect DNA viruses that are homologous to a 12-kDa circulating protein encoded by the virus-induced Drosophila gene diedel (die). We show that die mutant flies have shortened lifespan and succumb more rapidly than controls when infected with Sindbis virus. This reduced viability is associated with deregulated activation of the immune deficiency (IMD) pathway of host defense and can be rescued by mutations in the genes encoding the homolog of IKKγ or IMD itself. Our results reveal an endogenous pathway that is exploited by insect viruses to modulate NF-κB signaling and promote fly survival during the antiviral response.


Assuntos
Citocinas/química , Citocinas/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Imunidade , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Infecções por Alphavirus/genética , Sequência de Aminoácidos , Animais , Citocinas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/virologia , Imunidade/genética , Dados de Sequência Molecular , Mutação/genética , Sindbis virus , Análise de Sobrevida , Regulação para Cima/genética
3.
Pharmacol Rev ; 68(3): 603-30, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27329045

RESUMO

Proteinase 3 (PR3) has received great scientific attention after its identification as the essential antigenic target of antineutrophil cytoplasm antibodies in Wegener's granulomatosis (now called granulomatosis with polyangiitis). Despite many structural and functional similarities between neutrophil elastase (NE) and PR3 during biosynthesis, storage, and extracellular release, unique properties and pathobiological functions have emerged from detailed studies in recent years. The development of highly sensitive substrates and inhibitors of human PR3 and the creation of PR3-selective single knockout mice led to the identification of nonredundant roles of PR3 in cell death induction via procaspase-3 activation in cell cultures and in mouse models. According to a study in knockout mice, PR3 shortens the lifespan of infiltrating neutrophils in tissues and accelerates the clearance of aged neutrophils in mice. Membrane exposure of active human PR3 on apoptotic neutrophils reprograms the response of macrophages to phagocytosed neutrophils, triggers secretion of proinflammatory cytokines, and undermines immune silencing and tissue regeneration. PR3-induced disruption of the anti-inflammatory effect of efferocytosis may be relevant for not only granulomatosis with polyangiitis but also for other autoimmune diseases with high neutrophil turnover. Inhibition of membrane-bound PR3 by endogenous inhibitors such as the α-1-protease inhibitor is comparatively weaker than that of NE, suggesting that the adverse effects of unopposed PR3 activity resurface earlier than those of NE in individuals with α-1-protease inhibitor deficiency. Effective coverage of PR3 by anti-inflammatory tools and simultaneous inhibition of both PR3 and NE should be most promising in the future.


Assuntos
Anti-Inflamatórios/farmacologia , Fragmentos de Imunoglobulinas/farmacologia , Fragmentos de Imunoglobulinas/uso terapêutico , Mieloblastina/antagonistas & inibidores , Neutrófilos/enzimologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Terapia de Alvo Molecular , Mieloblastina/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/fisiologia
4.
J Biol Chem ; 292(8): 3252-3261, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28057754

RESUMO

The transport of proteins at the cell surface of Bacteroidetes depends on a secretory apparatus known as type IX secretion system (T9SS). This machine is responsible for the cell surface exposition of various proteins, such as adhesins, required for gliding motility in Flavobacterium, S-layer components in Tannerella forsythia, and tooth tissue-degrading enzymes in the oral pathogen Porphyromonas gingivalis Although a number of subunits of the T9SS have been identified, we lack details on the architecture of this secretion apparatus. Here we provide evidence that five of the genes encoding the core complex of the T9SS are co-transcribed and that the gene products are distributed in the cell envelope. Protein-protein interaction studies then revealed that these proteins oligomerize and interact through a dense network of contacts.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Porphyromonas gingivalis/metabolismo , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/análise , Sistemas de Secreção Bacterianos/genética , Infecções por Bacteroidaceae/microbiologia , Cristalografia por Raios X , Genes Bacterianos , Humanos , Porphyromonas gingivalis/química , Porphyromonas gingivalis/genética , Mapas de Interação de Proteínas , Subunidades Proteicas/análise , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
5.
J Allergy Clin Immunol ; 140(3): 759-770.e13, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27965111

RESUMO

BACKGROUND: Eligibility to immunotherapy is based on the determination of IgE reactivity to a specific allergen by means of skin prick or in vitro testing. Biomarkers predicting the likelihood of clinical improvement during immunotherapy would significantly improve patient selection. METHODS: Proteins were differentially assessed by using 2-dimensional differential gel electrophoresis and label-free mass spectrometry in pretreatment sera obtained from clinical responders and nonresponders within a cohort of 82 patients with grass pollen allergy receiving sublingual immunotherapy or placebo. Functional studies of Fetuin-A (FetA) were conducted by using gene silencing in a mouse asthma model, human dendritic cell in vitro stimulation assays, and surface plasmon resonance. RESULTS: Analysis by using quantitative proteomics of pretreatment sera from patients with grass pollen allergy reveals that high levels of O-glycosylated sialylated FetA isoforms are found in patients exhibiting a strong decrease in rhinoconjunctivitis symptoms after sublingual immunotherapy. Although FetA is involved in numerous inflammatory conditions, its potential role in allergy is unknown. In vivo silencing of the FETUA gene in BALB/c mice results in a dramatic upregulation of airway hyperresponsiveness, lung resistance, and TH2 responses after allergic sensitization to ovalbumin. Both sialylated and nonsialytated FetA bind to LPS, but only the former synergizes with LPS and grass pollen or mite allergens to enhance the Toll-like receptor 4-mediated proallergic properties of human dendritic cells. CONCLUSIONS: As a reflection of the patient's inflammatory status, pretreatment levels of sialylated FetA in the blood are indicative of the likelihood of clinical responses during grass pollen immunotherapy.


Assuntos
Alérgenos/imunologia , Poaceae/imunologia , Pólen/imunologia , Rinite Alérgica Sazonal/sangue , Rinite Alérgica Sazonal/terapia , Imunoterapia Sublingual , alfa-2-Glicoproteína-HS/análise , Animais , Biomarcadores/sangue , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Método Duplo-Cego , Inativação Gênica , Humanos , Lipopolissacarídeos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , alfa-2-Glicoproteína-HS/genética
6.
Mol Microbiol ; 99(6): 1099-118, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26714038

RESUMO

The Type VI secretion system (T6SS) is a multiprotein machine that delivers protein effectors in both prokaryotic and eukaryotic cells, allowing interbacterial competition and virulence. The mechanism of action of the T6SS requires the contraction of a sheath-like structure that propels a needle towards target cells, allowing the delivery of protein effectors. Here, we provide evidence that the entero-aggregative Escherichia coli Sci-1 T6SS is required to eliminate competitor bacteria. We further identify Tle1, a toxin effector encoded by this cluster and showed that Tle1 possesses phospholipase A1 and A2 activities required for the interbacterial competition. Self-protection of the attacker cell is secured by an outer membrane lipoprotein, Tli1, which binds Tle1 in a 1:1 stoichiometric ratio with nanomolar affinity, and inhibits its phospholipase activity. Tle1 is delivered into the periplasm of the prey cells using the VgrG1 needle spike protein as carrier. Further analyses demonstrate that the C-terminal extension domain of VgrG1, including a transthyretin-like domain, is responsible for the interaction with Tle1 and its subsequent delivery into target cells. Based on these results, we propose an additional mechanism of transport of T6SS effectors in which cognate effectors are selected by specific motifs located at the C-terminus of VgrG proteins.


Assuntos
Escherichia coli/metabolismo , Fosfolipases A1/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Caenorhabditis elegans , Escherichia coli/patogenicidade , Modelos Moleculares , Família Multigênica , Fosfolipases A1/química , Fosfolipases A1/genética , Domínios Proteicos , Sistemas de Secreção Tipo VI/genética , Virulência
7.
J Biol Chem ; 290(21): 13191-201, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25847242

RESUMO

ß-Barrel pore-forming toxins (ß-PFT), a large family of bacterial toxins, are generally secreted as water-soluble monomers and can form oligomeric pores in membranes following proteolytic cleavage and interaction with cell surface receptors. Monalysin has been recently identified as a ß-PFT that contributes to the virulence of Pseudomonas entomophila against Drosophila. It is secreted as a pro-protein that becomes active upon cleavage. Here we report the crystal and cryo-electron microscopy structure of the pro-form of Monalysin as well as the crystal structures of the cleaved form and of an inactive mutant lacking the membrane-spanning region. The overall structure of Monalysin displays an elongated shape, which resembles those of ß-pore-forming toxins, such as Aerolysin, but is devoid of a receptor-binding domain. X-ray crystallography, cryo-electron microscopy, and light-scattering studies show that pro-Monalysin forms a stable doughnut-like 18-mer complex composed of two disk-shaped nonamers held together by N-terminal swapping of the pro-peptides. This observation is in contrast with the monomeric pro-form of the other ß-PFTs that are receptor-dependent for membrane interaction. The membrane-spanning region of pro-Monalysin is fully buried in the center of the doughnut, suggesting that upon cleavage of pro-peptides, the two disk-shaped nonamers can, and have to, dissociate to leave the transmembrane segments free to deploy and lead to pore formation. In contrast with other toxins, the delivery of 18 subunits at once, nearby the cell surface, may be used to bypass the requirement of receptor-dependent concentration to reach the threshold for oligomerization into the pore-forming complex.


Assuntos
Toxinas Bacterianas/química , Microscopia Crioeletrônica/métodos , Proteínas Citotóxicas Formadoras de Poros/química , Pseudomonas/metabolismo , Sequência de Aminoácidos , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Membrana Celular , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Pseudomonas/genética , Pseudomonas/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos
8.
J Biol Chem ; 289(46): 31777-31791, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25288799

RESUMO

The function of neutrophil protease 3 (PR3) is poorly understood despite of its role in autoimmune vasculitides and its possible involvement in cell apoptosis. This makes it different from its structural homologue neutrophil elastase (HNE). Endogenous inhibitors of human neutrophil serine proteases preferentially inhibit HNE and to a lesser extent, PR3. We constructed a single-residue mutant PR3 (I217R) to investigate the S4 subsite preferences of PR3 and HNE and used the best peptide substrate sequences to develop selective phosphonate inhibitors with the structure Ac-peptidyl(P)(O-C6H4-4-Cl)2. The combination of a prolyl residue at P4 and an aspartyl residue at P2 was totally selective for PR3. We then synthesized N-terminally biotinylated peptidyl phosphonates to identify the PR3 in complex biological samples. These inhibitors resisted proteolytic degradation and rapidly inactivated PR3 in biological fluids such as inflammatory lung secretions and the urine of patients with bladder cancer. One of these inhibitors revealed intracellular PR3 in permeabilized neutrophils and on the surface of activated cells. They hardly inhibited PR3 bound to the surface of stimulated neutrophils despite their low molecular mass, suggesting that the conformation and reactivity of membrane-bound PR3 is altered. This finding is relevant for autoantibody binding and the subsequent activation of neutrophils in granulomatosis with polyangiitis (formerly Wegener disease). These are the first inhibitors that can be used as probes to monitor, detect, and control PR3 activity in a variety of inflammatory diseases.


Assuntos
Ésteres/química , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Mieloblastina/antagonistas & inibidores , Mieloblastina/química , Oligopeptídeos/química , Organofosfonatos/química , Animais , Apoptose , Biotinilação , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Hidrólise , Inflamação , Insetos , Espectrometria de Massas , Modelos Químicos , Mutação , Ativação de Neutrófilo , Neutrófilos/efeitos dos fármacos , Peptídeos/química , Prolina/química , Inibidores de Proteases/química , Solventes
9.
Sci Rep ; 14(1): 6577, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503809

RESUMO

The type IX secretion system (T9SS) is a large multi-protein transenvelope complex distributed into the Bacteroidetes phylum and responsible for the secretion of proteins involved in pathogenesis, carbohydrate utilization or gliding motility. In Porphyromonas gingivalis, the two-component system PorY sensor and response regulator PorX participate to T9SS gene regulation. Here, we present the crystal structure of PorXFj, the Flavobacterium johnsoniae PorX homolog. As for PorX, the PorXFj structure is comprised of a CheY-like N-terminal domain and an alkaline phosphatase-like C-terminal domain separated by a three-helix bundle central domain. While not activated and monomeric in solution, PorXFj crystallized as a dimer identical to active PorX. The CheY-like domain of PorXFj is in an active-like conformation, and PorXFj possesses phosphodiesterase activity, in agreement with the observation that the active site of its phosphatase-like domain is highly conserved with PorX.


Assuntos
Proteínas de Bactérias , Flavobacterium , Proteínas de Bactérias/metabolismo , Flavobacterium/metabolismo , Bacteroidetes/metabolismo , Atividade Motora , Sistemas de Secreção Bacterianos/genética , Porphyromonas gingivalis/metabolismo
10.
PLoS Pathog ; 7(9): e1002259, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21980286

RESUMO

Pseudomonas entomophila is an entomopathogenic bacterium that infects and kills Drosophila. P. entomophila pathogenicity is linked to its ability to cause irreversible damages to the Drosophila gut, preventing epithelium renewal and repair. Here we report the identification of a novel pore-forming toxin (PFT), Monalysin, which contributes to the virulence of P. entomophila against Drosophila. Our data show that Monalysin requires N-terminal cleavage to become fully active, forms oligomers in vitro, and induces pore-formation in artificial lipid membranes. The prediction of the secondary structure of the membrane-spanning domain indicates that Monalysin is a PFT of the ß-type. The expression of Monalysin is regulated by both the GacS/GacA two-component system and the Pvf regulator, two signaling systems that control P. entomophila pathogenicity. In addition, AprA, a metallo-protease secreted by P. entomophila, can induce the rapid cleavage of pro-Monalysin into its active form. Reduced cell death is observed upon infection with a mutant deficient in Monalysin production showing that Monalysin plays a role in P. entomophila ability to induce intestinal cell damages, which is consistent with its activity as a PFT. Our study together with the well-established action of Bacillus thuringiensis Cry toxins suggests that production of PFTs is a common strategy of entomopathogens to disrupt insect gut homeostasis.


Assuntos
Toxinas Bacterianas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Pseudomonas/metabolismo , Pseudomonas/patogenicidade , Animais , Toxinas Bacterianas/genética , Linhagem Celular , Drosophila melanogaster , Regulação Bacteriana da Expressão Gênica/fisiologia , Enteropatias/genética , Enteropatias/metabolismo , Enteropatias/microbiologia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Estrutura Terciária de Proteína , Pseudomonas/genética
11.
EMBO Rep ; 12(4): 327-33, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21372849

RESUMO

The peptidoglycan (PGN)-recognition protein LF (PGRP-LF) is a specific negative regulator of the immune deficiency (Imd) pathway in Drosophila. We determine the crystal structure of the two PGRP domains constituting the ectodomain of PGRP-LF at 1.72 and 1.94 Å resolution. The structures show that the LFz and LFw domains do not have a PGN-docking groove that is found in other PGRP domains, and they cannot directly interact with PGN, as confirmed by biochemical-binding assays. By using surface plasmon resonance analysis, we show that the PGRP-LF ectodomain interacts with the PGRP-LCx ectodomain in the absence and presence of tracheal cytotoxin. Our results suggest a mechanism for downregulation of the Imd pathway on the basis of the competition between PRGP-LCa and PGRP-LF to bind to PGRP-LCx.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Cristalografia por Raios X , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dados de Sequência Molecular , Peptidoglicano/metabolismo , Ligação Proteica , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Ressonância de Plasmônio de Superfície
12.
Artigo em Inglês | MEDLINE | ID: mdl-23908046

RESUMO

Monalysin was recently described as a novel pore-forming toxin (PFT) secreted by the Drosophila pathogen Pseudomonas entomophila. Recombinant monalysin is multimeric in solution, whereas PFTs are supposed to be monomeric until target membrane association. Monalysin crystals were obtained by the hanging-drop vapour-diffusion method using PEG 8000 as precipitant. Preliminary X-ray diffraction analysis revealed that monalysin crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 162.4, b = 146.2, c = 144.4 Å, ß = 122.8°, and diffracted to 2.85 Å resolution using synchrotron radiation. Patterson self-rotation analysis and Matthews coefficient calculation indicate that the asymmetric unit contains nine copies of monalysin. Heavy-atom derivative data were collected and a Ta6Br14 cluster derivative data set confirmed the presence of ninefold noncrystallographic symmetry.


Assuntos
Toxinas Bacterianas/química , Proteínas Citotóxicas Formadoras de Poros/química , Pseudomonas , Toxinas Bacterianas/isolamento & purificação , Cristalização , Cristalografia por Raios X , Proteínas Citotóxicas Formadoras de Poros/isolamento & purificação
13.
Sci Adv ; 9(40): eadg6996, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37792935

RESUMO

Secretins are outer membrane (OM) channels found in various bacterial nanomachines that secrete or assemble large extracellular structures. High-resolution 3D structures of type 2 secretion system (T2SS) secretins revealed bimodular channels with a C-module, holding a conserved central gate and an optional top gate, followed by an N-module for which multiple structural organizations have been proposed. Here, we perform a structure-driven in vivo study of the XcpD secretin, which validates one of the organizations of the N-module whose flexibility enables alternative conformations. We also show the existence of the central gate in vivo and its required flexibility, which is key for substrate passage and watertightness control. Last, functional, genomic, and phylogenetic analyses indicate that the optional top gate provides a gain of watertightness. Our data illustrate how the gating properties of T2SS secretins allow these large channels to overcome the duality between the necessity of preserving the OM impermeability while simultaneously promoting the secretion of large, folded effectors.


Assuntos
Sistemas de Secreção Tipo II , Sistemas de Secreção Tipo II/química , Sistemas de Secreção Tipo II/metabolismo , Secretina/metabolismo , Filogenia , Ligação Proteica , Proteínas de Bactérias/metabolismo
14.
J Biol Chem ; 286(14): 12300-7, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21310954

RESUMO

Grass is a clip domain serine protease (SP) involved in a proteolytic cascade triggering the Toll pathway activation of Drosophila during an immune response. Epistasic studies position it downstream of the apical protease ModSP and upstream of the terminal protease Spaetzle-processing enzyme. Here, we report the crystal structure of Grass zymogen. We found that Grass displays a rather deep active site cleft comparable with that of proteases of coagulation and complement cascades. A key distinctive feature is the presence of an additional loop (75-loop) in the proximity of the activation site localized on a protruding loop. All biochemical attempts to hydrolyze the activation site of Grass failed, strongly suggesting restricted access to this region. The 75-loop is thus proposed to constitute an original mechanism to prevent spontaneous activation. A comparison of Grass with clip serine proteases of known function involved in analogous proteolytic cascades allowed us to define two groups, according to the presence of the 75-loop and the conformation of the clip domain. One group (devoid of the 75-loop) contains penultimate proteases whereas the other contains terminal proteases. Using this classification, Grass appears to be a terminal protease. This result is evaluated according to the genetic data documenting Grass function.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Serina Proteases/química , Serina Proteases/metabolismo , Receptores Toll-Like/metabolismo , Animais , Domínio Catalítico , Linhagem Celular , Drosophila , Proteínas de Drosophila/genética , Serina Proteases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Relação Estrutura-Atividade , Receptores Toll-Like/genética
15.
FASEB J ; 25(9): 3019-31, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21670065

RESUMO

The physiological and pathological functions of proteinase 3 (PR3) are not well understood due to its close similarity to human neutrophil elastase (HNE) and the lack of a specific inhibitor. Based on structural analysis of the active sites of PR3 and HNE, we generated mutants derived from the polyvalent inhibitor SerpinB1 (monocyte/neutrophil elastase inhibitor) that specifically inhibit PR3 and that differ from wt-SerpinB1 by only 3 or 4 residues in the reactive center loop. The rate constant of association between the best SerpinB1 mutant and PR3 is 1.4 × 107 M⁻¹ · s⁻¹, which is ∼100-fold higher than that observed with wt-SerpinB1 and compares with that of α1-protease inhibitor (α1-PI) toward HNE. SerpinB1(S/DAR) is cleaved by HNE, but due to differences in rate, inhibition of PR3 by SerpinB1(S/DAR) is only minimally affected by the presence of HNE even when the latter is in excess. SerpinB1(S/DAR) inhibits soluble PR3 and also membrane-bound PR3 at the surface of activated neutrophils. Moreover, SerpinB1(S/DAR) clears induced PR3 from the surface of activated neutrophils. Overall, these specific inhibitors of PR3 will be valuable for defining biological functions of the protease and may prove useful as therapeutics for PR3-related inflammatory diseases, such as Wegener's granulomatosis.


Assuntos
Autoantígenos/metabolismo , Granulomatose com Poliangiite/imunologia , Mieloblastina/antagonistas & inibidores , Neutrófilos/efeitos dos fármacos , Serpinas/farmacologia , Autoanticorpos/química , Autoanticorpos/metabolismo , Clonagem Molecular , Humanos , Modelos Moleculares , Mutação , Mieloblastina/metabolismo , Neutrófilos/metabolismo , Conformação Proteica , Proteínas Recombinantes , Serpinas/química
16.
J Biol Chem ; 284(42): 28687-97, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19692333

RESUMO

Gram-negative binding protein 3 (GNBP3), a pattern recognition receptor that circulates in the hemolymph of Drosophila, is responsible for sensing fungal infection and triggering Toll pathway activation. Here, we report that GNBP3 N-terminal domain binds to fungi upon identifying long chains of beta-1,3-glucans in the fungal cell wall as a major ligand. Interestingly, this domain fails to interact strongly with short oligosaccharides. The crystal structure of GNBP3-Nter reveals an immunoglobulin-like fold in which the glucan binding site is masked by a loop that is highly conserved among glucan-binding proteins identified in several insect orders. Structure-based mutagenesis experiments reveal an essential role for this occluding loop in discriminating between short and long polysaccharides. The displacement of the occluding loop is necessary for binding and could explain the specificity of the interaction with long chain structured polysaccharides. This represents a novel mechanism for beta-glucan recognition.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas Fúngicas/química , Sequência de Aminoácidos , Animais , Bombyx , Cristalografia por Raios X/métodos , Drosophila melanogaster , Hemolinfa/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Conformação Molecular , Dados de Sequência Molecular , Mutagênese , Polissacarídeos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , beta-Glucanas/química
17.
FEBS J ; 287(18): 4068-4081, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31995266

RESUMO

Polymorphonuclear neutrophils contain at least four serine endopeptidases, namely neutrophil elastase (NE), proteinase 3 (PR3), cathepsin G (CatG), and NSP4, which contribute to the regulation of infection and of inflammatory processes. In physiological conditions, endogenous inhibitors including α2-macroglobulin (α2-M), serpins [α1-proteinase inhibitor (α1-PI)], monocyte neutrophil elastase inhibitor (MNEI), α1-antichymotrypsin, and locally produced chelonianins (elafin, SLPI) control excessive proteolytic activity of neutrophilic serine proteinases. In contrast to human NE (hNE), hPR3 is weakly inhibited by α1-PI and MNEI but not by SLPI. α2-M is a large spectrum inhibitor that traps a variety of proteinases in response to cleavage(s) in its bait region. We report here that α2-M was more rapidly processed by hNE than hPR3 or hCatG. This was confirmed by the observation that the association between α2-M and hPR3 is governed by a kass in the ≤ 105  m-1 ·s-1 range. Since α2-M-trapped proteinases retain peptidase activity, we first predicted the putative cleavage sites within the α2-M bait region (residues 690-728) using kinetic and molecular modeling approaches. We then identified by mass spectrum analysis the cleavage sites of hPR3 in a synthetic peptide spanning the 39-residue bait region of α2-M (39pep-α2-M). Since the 39pep-α2-M peptide and the corresponding bait area in the whole protein do not contain sequences with a high probability of specific cleavage by hPR3 and were indeed only slowly cleaved by hPR3, it can be concluded that α2-M is a poor inhibitor of hPR3. The resistance of hPR3 to inhibition by endogenous inhibitors explains at least in part its role in tissue injury during chronic inflammatory diseases and its well-recognized function of major target autoantigen in granulomatosis with polyangiitis.


Assuntos
Simulação de Acoplamento Molecular , Mieloblastina/química , alfa 2-Macroglobulinas Associadas à Gravidez/química , Proteínas Recombinantes/química , Sequência de Aminoácidos , Sítios de Ligação , Cromatografia Líquida/métodos , Humanos , Cinética , Espectrometria de Massas/métodos , Mieloblastina/genética , Mieloblastina/metabolismo , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , alfa 2-Macroglobulinas Associadas à Gravidez/genética , alfa 2-Macroglobulinas Associadas à Gravidez/metabolismo , Ligação Proteica , Domínios Proteicos , Proteólise , Proteínas Recombinantes/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-19724120

RESUMO

Gram-negative bacteria-binding protein 3 (GNBP3) is a pattern-recognition receptor which contributes to the defensive response against fungal infection in Drosophila. The protein consists of an N-terminal domain, which is considered to recognize beta-glucans from the fungal cell wall, and a C-terminal domain, which is homologous to bacterial glucanases but devoid of activity. The N-terminal domain of GNBP3 (GNBP3-Nter) was successfully purified after expression in Drosophila S2 cells. Diffraction-quality crystals were produced by the hanging-drop vapour-diffusion method using PEG 2000 and PEG 8000 as precipitants. Preliminary X-ray diffraction analysis revealed that the GNBP3-Nter crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 134.79, b = 30.55, c = 51.73 A, beta = 107.4 degrees, and diffracted to 1.7 A using synchrotron radiation. The asymmetric unit is expected to contain two copies of GNBP3-Nter. Heavy-atom derivative data were collected and a samarium derivative showed one high-occupancy site per molecule.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/isolamento & purificação , Proteínas de Drosophila/química , Proteínas de Drosophila/isolamento & purificação , Drosophila melanogaster/química , Sequência de Aminoácidos , Animais , Cristalização , Cristalografia por Raios X , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Estrutura Terciária de Proteína
19.
Mol Immunol ; 45(9): 2521-30, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18304640

RESUMO

In Drosophila the synthesis of antimicrobial peptides in response to microbial infections is under the control of the Toll and immune deficiency (Imd) signaling pathways. The Toll signaling pathway responds mainly to Gram-positive bacterial and fungal infection while the Imd pathway mediates the response to Gram-negative bacteria. Microbial recognition upstream of Toll involves, at least in part, peptidoglycan recognition proteins (PGRPs). The sensing of Gram-positive bacteria is mediated by the pattern recognition receptors PGRP-SA and Gram-negative binding protein 1 (GNBP1) that cooperate to detect the presence of lysine-type peptidoglycan in the host. Recently it has been shown that a loss-of-function mutation in peptidoglycan recognition protein SD (PGRP-SD) severely exacerbates the PGRP-SA and GNBP1 mutant phenotypes. Here we have solved the crystal structure of PGRP-SD at 1.5A resolution. Comparison with available structures of PGRPs in complex with their peptidoglycan (PGN) ligand strongly suggests a diaminopimelic acid (DAP) specificity for PGRP-SD. This result is supported by pull-down assays with insoluble PGNs. In addition we show that Toll pathway activation after infection by DAP-type PGN containing bacteria is clearly reduced in PGRP-SD mutant flies. Our hypothesis is that the role of PGRP-SD is the recognition of DAP-type PGNs responsible for the activation of the Toll pathway by Gram-negative bacteria.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Ácido Diaminopimélico/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Peptidoglicano/metabolismo , Sequência de Aminoácidos , Animais , Bactérias/imunologia , Bactérias/metabolismo , Sítios de Ligação , Proteínas de Transporte/imunologia , Proteínas de Transporte/isolamento & purificação , Domínio Catalítico , Cristalografia por Raios X , Ácido Diaminopimélico/imunologia , Drosophila/imunologia , Proteínas de Drosophila/imunologia , Dados de Sequência Molecular , Peptidoglicano/imunologia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Transdução de Sinais
20.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 11): 1165-71, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19020355

RESUMO

Previous studies have shown that the trypsin inhibitors LMPI-1, LMPI-3 and SGTI from locusts display an unusual species selectivity. They inhibit locust, crayfish and fungal trypsins several orders of magnitude more efficiently than bovine trypsin. In contrast, the chymotrypsin inhibitors from the same family, LMPI-2 and SGCI, are active towards mammalian enzymes. The crystal structures of a variant of LMPI-1 and of LMPI-2 in complex with bovine chymotrypsin have revealed subtle structural differences between the trypsin and chymotrypsin inhibitors. In a previous report, it was proposed that Pro173 of bovine trypsin is responsible for the weak inhibitory activity of LMPI-1 and LMPI-3. A fungal trypsin from Fusarium oxysporum contains Gly173 instead of Pro173 and has been shown to be strongly inhibited by LMPI-1 and LMPI-3. To explore the structural features that are responsible for this property, the crystal structure of the complex between LMPI-3 and F. oxysporum trypsin was determined at 1.8 A resolution. This study indicates that this small inhibitor interacts with the protease through the reactive site P3-P4' and the P10-P6 residues. Comparison of this complex with the SGTI-crayfish trypsin and BPTI-bovine trypsin complexes reinforces this hypothesis on the role of residue 173 of trypsin in species selectivity.


Assuntos
Fusarium , Locusta migratoria , Inibidores da Tripsina/química , Tripsina/química , Animais , Astacoidea , Bovinos , Cristalização , Fusarium/enzimologia , Ligação Proteica , Alinhamento de Sequência , Especificidade da Espécie , Relação Estrutura-Atividade , Tripsina/metabolismo , Inibidores da Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA