Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 37(11): e9513, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36971184

RESUMO

RATIONALE: Obtaining nitrous oxide isotopocule measurements with isotope ratio mass spectrometry (IRMS) involves analyzing the ion current ratios of the nitrous oxide parent ion (N2 O+ ) as well as those of the NO+ fragment ion. The data analysis requires correcting for "scrambling" in the ion source, whereby the NO+ fragment ion obtains the outer N atom from the N2 O molecule. While descriptions exist for this correction, and interlaboratory intercalibration efforts have been made, there has yet to be published a package of code for implementing isotopomer calibrations. METHODS: We developed a user-friendly Python package (pyisotopomer) to determine two coefficients (γ and κ) that describe scrambling in the IRMS ion source, and then used this calibration to obtain intramolecular isotope deltas in N2 O samples. RESULTS: With two appropriate reference materials, γ and κ can be determined robustly and accurately for a given IRMS system. An additional third reference material is needed to define the zero-point of the delta scale. We show that IRMS scrambling behavior can vary with time, necessitating regular calibrations. Finally, we present an intercalibration between two IRMS laboratories, using pyisotopomer to calculate γ and κ, and to obtain intramolecular N2 O isotope deltas in lake water unknowns. CONCLUSIONS: Given these considerations, we discuss how to use pyisotopomer to obtain high-quality N2 O isotopocule data from IRMS systems, including the use of appropriate reference materials and frequency of calibration.

2.
ISME J ; 15(5): 1434-1444, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33349653

RESUMO

The ocean is a net source of N2O, a potent greenhouse gas and ozone-depleting agent. However, the removal of N2O via microbial N2O consumption is poorly constrained and rate measurements have been restricted to anoxic waters. Here we expand N2O consumption measurements from anoxic zones to the sharp oxygen gradient above them, and experimentally determine kinetic parameters in both oxic and anoxic seawater for the first time. We find that the substrate affinity, O2 tolerance, and community composition of N2O-consuming microbes in oxic waters differ from those in the underlying anoxic layers. Kinetic parameters determined here are used to model in situ N2O production and consumption rates. Estimated in situ rates differ from measured rates, confirming the necessity to consider kinetics when predicting N2O cycling. Microbes from the oxic layer consume N2O under anoxic conditions at a much faster rate than microbes from anoxic zones. These experimental results are in keeping with model results which indicate that N2O consumption likely takes place above the oxygen deficient zone (ODZ). Thus, the dynamic layer with steep O2 and N2O gradients right above the ODZ is a previously ignored potential gatekeeper of N2O and should be accounted for in the marine N2O budget.


Assuntos
Óxido Nitroso , Oxigênio , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA