Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Brief Bioinform ; 21(5): 1549-1567, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31626279

RESUMO

Antibodies are proteins that recognize the molecular surfaces of potentially noxious molecules to mount an adaptive immune response or, in the case of autoimmune diseases, molecules that are part of healthy cells and tissues. Due to their binding versatility, antibodies are currently the largest class of biotherapeutics, with five monoclonal antibodies ranked in the top 10 blockbuster drugs. Computational advances in protein modelling and design can have a tangible impact on antibody-based therapeutic development. Antibody-specific computational protocols currently benefit from an increasing volume of data provided by next generation sequencing and application to related drug modalities based on traditional antibodies, such as nanobodies. Here we present a structured overview of available databases, methods and emerging trends in computational antibody analysis and contextualize them towards the engineering of candidate antibody therapeutics.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Biologia Computacional/métodos , Bases de Dados de Proteínas , Simulação de Acoplamento Molecular , Conformação Proteica
2.
Bioinformatics ; 38(1): 65-72, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34383892

RESUMO

MOTIVATION: Co-evolution analysis can be used to accurately predict residue-residue contacts from multiple sequence alignments. The introduction of machine-learning techniques has enabled substantial improvements in precision and a shift from predicting binary contacts to predict distances between pairs of residues. These developments have significantly improved the accuracy of de novo prediction of static protein structures. With AlphaFold2 lifting the accuracy of some predicted protein models close to experimental levels, structure prediction research will move on to other challenges. One of those areas is the prediction of more than one conformation of a protein. Here, we examine the potential of residue-residue distance predictions to be informative of protein flexibility rather than simply static structure. RESULTS: We used DMPfold to predict distance distributions for every residue pair in a set of proteins that showed both rigid and flexible behaviour. Residue pairs that were in contact in at least one reference structure were classified as rigid, flexible or neither. The predicted distance distribution of each residue pair was analysed for local maxima of probability indicating the most likely distance or distances between a pair of residues. We found that rigid residue pairs tended to have only a single local maximum in their predicted distance distributions while flexible residue pairs more often had multiple local maxima. These results suggest that the shape of predicted distance distributions contains information on the rigidity or flexibility of a protein and its constituent residues. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado de Máquina , Proteínas , Proteínas/química , Conformação Molecular , Alinhamento de Sequência , Biologia Computacional/métodos
3.
PLoS Biol ; 16(5): e2006192, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29782488

RESUMO

Aiming at the design of an allosteric modulator of the neonatal Fc receptor (FcRn)-Immunoglobulin G (IgG) interaction, we developed a new methodology including NMR fragment screening, X-ray crystallography, and magic-angle-spinning (MAS) NMR at 100 kHz after sedimentation, exploiting very fast spinning of the nondeuterated soluble 42 kDa receptor construct to obtain resolved proton-detected 2D and 3D NMR spectra. FcRn plays a crucial role in regulation of IgG and serum albumin catabolism. It is a clinically validated drug target for the treatment of autoimmune diseases caused by pathogenic antibodies via the inhibition of its interaction with IgG. We herein present the discovery of a small molecule that binds into a conserved cavity of the heterodimeric, extracellular domain composed of an α-chain and ß2-microglobulin (ß2m) (FcRnECD, 373 residues). X-ray crystallography was used alongside NMR at 100 kHz MAS with sedimented soluble protein to explore possibilities for refining the compound as an allosteric modulator. Proton-detected MAS NMR experiments on fully protonated [13C,15N]-labeled FcRnECD yielded ligand-induced chemical-shift perturbations (CSPs) for residues in the binding pocket and allosteric changes close to the interface of the two receptor heterodimers present in the asymmetric unit as well as potentially in the albumin interaction site. X-ray structures with and without ligand suggest the need for an optimized ligand to displace the α-chain with respect to ß2m, both of which participate in the FcRnECD-IgG interaction site. Our investigation establishes a method to characterize structurally small molecule binding to nondeuterated large proteins by NMR, even in their glycosylated form, which may prove highly valuable for structure-based drug discovery campaigns.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Receptores Fc/metabolismo , Sítio Alostérico , Cristalografia por Raios X , Células HEK293 , Humanos , Ligantes
4.
PLoS Comput Biol ; 16(2): e1007636, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32069281

RESUMO

Most current analysis tools for antibody next-generation sequencing data work with primary sequence descriptors, leaving accompanying structural information unharnessed. We have used novel rapid methods to structurally characterize the complementary-determining regions (CDRs) of more than 180 million human and mouse B-cell receptor (BCR) repertoire sequences. These structurally annotated CDRs provide unprecedented insights into both the structural predetermination and dynamics of the adaptive immune response. We show that B-cell types can be distinguished based solely on these structural properties. Antigen-unexperienced BCR repertoires use the highest number and diversity of CDR structures and these patterns of naïve repertoire paratope usage are highly conserved across subjects. In contrast, more differentiated B-cells are more personalized in terms of CDR structure usage. Our results establish the CDR structure differences in BCR repertoires and have applications for many fields including immunodiagnostics, phage display library generation, and "humanness" assessment of BCR repertoires from transgenic animals. The software tool for structural annotation of BCR repertoires, SAAB+, is available at https://github.com/oxpig/saab_plus.


Assuntos
Linfócitos B/imunologia , Diferenciação Celular , Receptores de Antígenos de Linfócitos B/metabolismo , Imunidade Adaptativa , Animais , Animais Geneticamente Modificados , Anticorpos , Linfócitos B/citologia , Análise por Conglomerados , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoglobulina G/química , Camundongos , Camundongos Endogâmicos C57BL , Análise de Componente Principal , Receptores de Antígenos de Linfócitos B/genética , Software
5.
Bioinformatics ; 35(10): 1774-1776, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30321295

RESUMO

MOTIVATION: Canonical forms of the antibody complementarity-determining regions (CDRs) were first described in 1987 and have been redefined on multiple occasions since. The canonical forms are often used to approximate the antibody binding site shape as they can be predicted from sequence. A rapid predictor would facilitate the annotation of CDR structures in the large amounts of repertoire data now becoming available from next generation sequencing experiments. RESULTS: SCALOP annotates CDR canonical forms for antibody sequences, supported by an auto-updating database to capture the latest cluster information. Its accuracy is comparable to that of a standard structural predictor but it is 800 times faster. The auto-updating nature of SCALOP ensures that it always attains the best possible coverage. AVAILABILITY AND IMPLEMENTATION: SCALOP is available as a web application and for download under a GPLv3 license at opig.stats.ox.ac.uk/webapps/scalop. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Software , Anticorpos , Sítios de Ligação de Anticorpos , Regiões Determinantes de Complementaridade , Modelos Moleculares
6.
J Immunol ; 201(12): 3694-3704, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30397033

RESUMO

Next-generation sequencing of the Ig gene repertoire (Ig-seq) produces large volumes of information at the nucleotide sequence level. Such data have improved our understanding of immune systems across numerous species and have already been successfully applied in vaccine development and drug discovery. However, the high-throughput nature of Ig-seq means that it is afflicted by high error rates. This has led to the development of error-correction approaches. Computational error-correction methods use sequence information alone, primarily designating sequences as likely to be correct if they are observed frequently. In this work, we describe an orthogonal method for filtering Ig-seq data, which considers the structural viability of each sequence. A typical natural Ab structure requires the presence of a disulfide bridge within each of its variable chains to maintain the fold. Our Ab Sequence Selector (ABOSS) uses the presence/absence of this bridge as a way of both identifying structurally viable sequences and estimating the sequencing error rate. On simulated Ig-seq datasets, ABOSS is able to identify more than 99% of structurally viable sequences. Applying our method to six independent Ig-seq datasets (one mouse and five human), we show that our error calculations are in line with previous experimental and computational error estimates. We also show how ABOSS is able to identify structurally impossible sequences missed by other error-correction methods.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunoglobulinas/genética , Software , Vacinas/imunologia , Algoritmos , Animais , Biologia Computacional , Bases de Dados como Assunto , Desenvolvimento de Medicamentos , Humanos , Camundongos , Conformação Proteica , Controle de Qualidade , Erro Científico Experimental , Relação Estrutura-Atividade
7.
J Immunol ; 201(8): 2502-2509, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30217829

RESUMO

Abs are immune system proteins that recognize noxious molecules for elimination. Their sequence diversity and binding versatility have made Abs the primary class of biopharmaceuticals. Recently, it has become possible to query their immense natural diversity using next-generation sequencing of Ig gene repertoires (Ig-seq). However, Ig-seq outputs are currently fragmented across repositories and tend to be presented as raw nucleotide reads, which means nontrivial effort is required to reuse the data for analysis. To address this issue, we have collected Ig-seq outputs from 55 studies, covering more than half a billion Ab sequences across diverse immune states, organisms (primarily human and mouse), and individuals. We have sorted, cleaned, annotated, translated, and numbered these sequences and make the data available via our Observed Antibody Space (OAS) resource at http://antibodymap.org The data within OAS will be regularly updated with newly released Ig-seq datasets. We believe OAS will facilitate data mining of immune repertoires for improved understanding of the immune system and development of better biotherapeutics.


Assuntos
Anticorpos/genética , Mineração de Dados/métodos , Imunoglobulinas/genética , Imunoterapia/métodos , Animais , Diversidade de Anticorpos , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunidade Humoral/genética , Camundongos , Anotação de Sequência Molecular
8.
Angew Chem Int Ed Engl ; 58(28): 9399-9403, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31095849

RESUMO

The widely expressed G-protein coupled receptors (GPCRs) are versatile signal transducer proteins that are attractive drug targets but structurally challenging to study. GPCRs undergo a number of conformational rearrangements when transitioning from the inactive to the active state but have so far been believed to adopt a fairly conserved inactive conformation. Using 19 F NMR spectroscopy and advanced molecular dynamics simulations we describe a novel inactive state of the adenosine 2A receptor which is stabilised by the aminotriazole antagonist Cmpd-1. We demonstrate that the ligand stabilises a unique conformation of helix V and present data on the putative binding mode of the compound involving contacts to the transmembrane bundle as well as the extracellular loop 2.


Assuntos
Amitrol (Herbicida)/antagonistas & inibidores , Compostos de Bifenilo/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular/normas , Receptor A2A de Adenosina/química , Humanos
9.
Bioinformatics ; 33(9): 1346-1353, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28453681

RESUMO

Motivation: Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. Results: We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Availability and Implementation: Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. Contact: deane@stats.ox.ac.uk. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Bases de Conhecimento , Modelos Moleculares , Conformação Proteica , Software , Algoritmos , Animais , Anticorpos/química , Anticorpos/metabolismo
10.
Nucleic Acids Res ; 44(W1): W474-8, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27131379

RESUMO

SAbPred is a server that makes predictions of the properties of antibodies focusing on their structures. Antibody informatics tools can help improve our understanding of immune responses to disease and aid in the design and engineering of therapeutic molecules. SAbPred is a single platform containing multiple applications which can: number and align sequences; automatically generate antibody variable fragment homology models; annotate such models with estimated accuracy alongside sequence and structural properties including potential developability issues; predict paratope residues; and predict epitope patches on protein antigens. The server is available at http://opig.stats.ox.ac.uk/webapps/sabpred.


Assuntos
Anticorpos/química , Anticorpos/imunologia , Internet , Software , Algoritmos , Antígenos/química , Antígenos/imunologia , Sítios de Ligação de Anticorpos/imunologia , Epitopos/química , Epitopos/imunologia , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/imunologia , Modelos Moleculares , Anotação de Sequência Molecular , Interface Usuário-Computador
11.
Nucleic Acids Res ; 41(Web Server issue): W379-83, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23640332

RESUMO

Membrane proteins are estimated to be the targets of 50% of drugs that are currently in development, yet we have few membrane protein crystal structures. As a result, for a membrane protein of interest, the much-needed structural information usually comes from a homology model. Current homology modelling software is optimized for globular proteins, and ignores the constraints that the membrane is known to place on protein structure. Our Memoir server produces homology models using alignment and coordinate generation software that has been designed specifically for transmembrane proteins. Memoir is easy to use, with the only inputs being a structural template and the sequence that is to be modelled. We provide a video tutorial and a guide to assessing model quality. Supporting data aid manual refinement of the models. These data include a set of alternative conformations for each modelled loop, and a multiple sequence alignment that incorporates the query and template. Memoir works with both α-helical and ß-barrel types of membrane proteins and is freely available at http://opig.stats.ox.ac.uk/webapps/memoir.


Assuntos
Proteínas de Membrana/química , Software , Homologia Estrutural de Proteína , Internet , Modelos Moleculares
12.
Proteins ; 82(2): 175-86, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23589399

RESUMO

Membrane proteins (MPs) have become a major focus in structure prediction, due to their medical importance. There is, however, a lack of fast and reliable methods that specialize in the modeling of MP loops. Often methods designed for soluble proteins (SPs) are applied directly to MPs. In this article, we investigate the validity of such an approach in the realm of fragment-based methods. We also examined the differences in membrane and soluble protein loops that might affect accuracy. We test our ability to predict soluble and MP loops with the previously published method FREAD. We show that it is possible to predict accurately the structure of MP loops using a database of MP fragments (0.5-1 Å median root-mean-square deviation). The presence of homologous proteins in the database helps prediction accuracy. However, even when homologues are removed better results are still achieved using fragments of MPs (0.8-1.6 Å) rather than SPs (1-4 Å) to model MP loops. We find that many fragments of SPs have shapes similar to their MP counterparts but have very different sequences; however, they do not appear to differ in their substitution patterns. Our findings may allow further improvements to fragment-based loop modeling algorithms for MPs. The current version of our proof-of-concept loop modeling protocol produces high-accuracy loop models for MPs and is available as a web server at http://medeller.info/fread.


Assuntos
Simulação por Computador , Proteínas de Membrana/química , Modelos Moleculares , Fragmentos de Peptídeos/química , Motivos de Aminoácidos , Bases de Dados de Proteínas , Software , Homologia Estrutural de Proteína
13.
J Funct Morphol Kinesiol ; 9(1)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390925

RESUMO

The correction of postural weaknesses through the better positioning of the pelvis is an important approach in sports therapy and physiotherapy. The pelvic position in the sagittal plane is largely dependent on the muscular balance of the ventral and dorsal muscle groups. The aim of this exploratory study was to examine whether healthy persons use similar muscular activation patterns to correct their pelvic position or whether there are different motor strategies. The following muscles were recorded in 41 persons using surface electromyography (EMG): M. trapezius pars ascendens, M. erector spinae pars lumbalis, M. gluteus maximus, M. biceps femoris, M. rectus abdominis, and M. obliquus externus. The participants performed 10 voluntary pelvic movements (retroversion of the pelvis). The anterior pelvic tilt was measured videographically via marker points on the anterior and posterior superior iliac spine. The EMG data were further processed and normalized to the maximum voluntary contraction. A linear regression analysis was conducted to assess the relationship between changes in the pelvic tilt and muscle activities. Subsequently, a Ward clustering analysis was applied to detect potential muscle activation patterns. The differences between the clusters and the pelvic tilt were examined using ANOVA. Cluster analysis revealed the presence of four clusters with different muscle activation patterns in which the abdominal muscles and dorsal muscle groups were differently involved. However, the gluteus maximus muscle was involved in every activation pattern. It also had the strongest correlation with the changes in pelvic tilt. Different individual muscle patterns are used by different persons to correct pelvic posture, with the gluteus maximus muscle apparently playing the most important role. This can be important for therapy, as different muscle strategies should be trained depending on the individually preferred motor patterns.

14.
Front Mol Biosci ; 10: 1214424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484529

RESUMO

AlphaFold2 has hallmarked a generational improvement in protein structure prediction. In particular, advances in antibody structure prediction have provided a highly translatable impact on drug discovery. Though AlphaFold2 laid the groundwork for all proteins, antibody-specific applications require adjustments tailored to these molecules, which has resulted in a handful of deep learning antibody structure predictors. Herein, we review the recent advances in antibody structure prediction and relate them to their role in advancing biologics discovery.

15.
Bioinformatics ; 27(13): i15-23, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21685065

RESUMO

MOTIVATION: Membrane proteins are both abundant and important in cells, but the small number of solved structures restricts our understanding of them. Here we consider whether membrane proteins undergo different substitutions from their soluble counterparts and whether these can be used to improve membrane protein alignments, and therefore improve prediction of their structure. RESULTS: We construct substitution tables for different environments within membrane proteins. As data is scarce, we develop a general metric to assess the quality of these asymmetric tables. Membrane proteins show markedly different substitution preferences from soluble proteins. For example, substitution preferences in lipid tail-contacting parts of membrane proteins are found to be distinct from all environments in soluble proteins, including buried residues. A principal component analysis of the tables identifies the greatest variation in substitution preferences to be due to changes in hydrophobicity; the second largest variation relates to secondary structure. We demonstrate the use of our tables in pairwise sequence-to-structure alignments (also known as 'threading') of membrane proteins using the FUGUE alignment program. On average, in the 10-25% sequence identity range, alignments are improved by 28 correctly aligned residues compared with alignments made using FUGUE's default substitution tables. Our alignments also lead to improved structural models. AVAILABILITY: Substitution tables are available at: http://www.stats.ox.ac.uk/proteins/resources.


Assuntos
Proteínas de Membrana/química , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Software , Homologia Estrutural de Proteína , Humanos , Modelos Moleculares , Análise de Componente Principal , Estrutura Secundária de Proteína
16.
MAbs ; 14(1): 2138092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36418193

RESUMO

The propensity for some monoclonal antibodies (mAbs) to aggregate at physiological and manufacturing pH values can prevent their use as therapeutic molecules or delay time to market. Consequently, developability assessments are essential to select optimum candidates, or inform on mitigation strategies to avoid potential late-stage failures. These studies are typically performed in a range of buffer solutions because factors such as pH can dramatically alter the aggregation propensity of the test mAbs (up to 100-fold in extreme cases). A computational method capable of robustly predicting the aggregation propensity at the pH values of common storage buffers would have substantial value. Here, we describe a mAb aggregation prediction tool (MAPT) that builds on our previously published isotype-dependent, charge-based model of aggregation. We show that the addition of a homology model-derived hydrophobicity descriptor to our electrostatic aggregation model enabled the generation of a robust mAb developability indicator. To contextualize our aggregation scoring system, we analyzed 97 clinical-stage therapeutic mAbs. To further validate our approach, we focused on six mAbs (infliximab, tocilizumab, rituximab, CNTO607, MEDI1912 and MEDI1912_STT) which have been reported to cover a large range of aggregation propensities. The different aggregation propensities of the case study molecules at neutral and slightly acidic pH were correctly predicted, verifying the utility of our computational method.


Assuntos
Antineoplásicos Imunológicos , Imunoglobulina G , Imunoglobulina G/química , Anticorpos Monoclonais/química , Eletricidade Estática , Interações Hidrofóbicas e Hidrofílicas
17.
Front Immunol ; 13: 884110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707541

RESUMO

We have carried out a long-timescale simulation study on crystal structures of nine antibody-antigen pairs, in antigen-bound and antibody-only forms, using molecular dynamics with enhanced sampling and an explicit water model to explore interface conformation and hydration. By combining atomic level simulation and replica exchange to enable full protein flexibility, we find significant numbers of bridging water molecules at the antibody-antigen interface. Additionally, a higher proportion of interactions excluding bulk waters and a lower degree of antigen bound CDR conformational sampling are correlated with higher antibody affinity. The CDR sampling supports enthalpically driven antibody binding, as opposed to entropically driven, in that the difference between antigen bound and unbound conformations do not correlate with affinity. We thus propose that interactions with waters and CDR sampling are aspects of the interface that may moderate antibody-antigen binding, and that explicit hydration and CDR flexibility should be considered to improve antibody affinity prediction and computational design workflows.


Assuntos
Anticorpos , Simulação de Dinâmica Molecular , Anticorpos/química , Afinidade de Anticorpos , Antígenos , Água
18.
Front Immunol ; 13: 969176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860259

RESUMO

[This corrects the article DOI: 10.3389/fimmu.2022.884110.].

19.
Bioinformatics ; 26(22): 2833-40, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20926421

RESUMO

MOTIVATION: Membrane proteins (MPs) are important drug targets but knowledge of their exact structure is limited to relatively few examples. Existing homology-based structure prediction methods are designed for globular, water-soluble proteins. However, we are now beginning to have enough MP structures to justify the development of a homology-based approach specifically for them. RESULTS: We present a MP-specific homology-based coordinate generation method, MEDELLER, which is optimized to build highly reliable core models. The method outperforms the popular structure prediction programme Modeller on MPs. The comparison of the two methods was performed on 616 target-template pairs of MPs, which were classified into four test sets by their sequence identity. Across all targets, MEDELLER gave an average backbone root mean square deviation (RMSD) of 2.62 Å versus 3.16 Å for Modeller. On our 'easy' test set, MEDELLER achieves an average accuracy of 0.93 Å backbone RMSD versus 1.56 Å for Modeller. AVAILABILITY AND IMPLEMENTATION: http://medeller.info; Implemented in Python, Bash and Perl CGI for use on Linux systems; Supplementary data are available at http://www.stats.ox.ac.uk/proteins/resources.


Assuntos
Proteínas de Membrana/química , Software , Bases de Dados de Proteínas , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos
20.
Nat Commun ; 12(1): 3305, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083522

RESUMO

Dopamine D1 receptor (D1R) is an important drug target implicated in many psychiatric and neurological disorders. Selective agonism of D1R are sought to be the therapeutic strategy for these disorders. Most selective D1R agonists share a dopamine-like catechol moiety in their molecular structure, and their therapeutic potential is therefore limited by poor pharmacological properties in vivo. Recently, a class of non-catechol D1R selective agonists with a distinct scaffold and pharmacological properties were reported. Here, we report the crystal structure of D1R in complex with stimulatory G protein (Gs) and a non-catechol agonist Compound 1 at 3.8 Å resolution. The structure reveals the ligand bound to D1R in an extended conformation, spanning from the orthosteric site to extracellular loop 2 (ECL2). Structural analysis reveals that the unique features of D1R ligand binding pocket explains the remarkable selectivity of this scaffold for D1R over other aminergic receptors, and sheds light on the mechanism for D1R activation by the non-catechol agonist.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Técnicas In Vitro , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA