Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Hypertens ; 41(7): 1159-1167, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37071429

RESUMO

BACKGROUND: SBP and blood pressure variability are independent risk factors for cerebral small vessel disease, a leading cause for stroke and dementia. Calcium-channel blockers are known to reduce blood pressure variability and may thus offer benefit against dementia. Beyond this effect, the impact of calcium-channel blockers on hypertension-induced neuroinflammation, and especially, microglial phenotype remains unknown. We aimed to study the ability of amlopidine to alleviate microglia inflammation, and slow down cognitive dysfunction in aged hypertensive mice. METHODS: Hypertensive BPH/2J and normotensive BPN/3J mice were studied until 12 months of age. Hypertensive mice were untreated or received amlodipine (10 mg/kg per day). Blood pressure parameters were measured by telemetry and tail cuff plethysmography. Mice underwent repeated series of cognitive tasks. Brain immunohistochemistry was performed to study blood-brain barrier dysfunction and microglial pro-inflammatory phenotype (CD68 + Iba1 + cells; morphological analysis). RESULTS: Amlodipine normalized SBP over the entire life span and decreased blood pressure variability. BPH/2J mice exhibited impaired short-term memory that was prevented by amlodipine at 12 months (discrimination index 0.41 ±â€Š0.25 in amlodipine-treated vs. 0.14 ±â€Š0.15 in untreated BPH/2J mice, P  = 0.02). Amlopidine treatment of BPH/2J did not prevent blood-brain barrier leakage, a measure of cerebral small vessel disease, but limited its size. Microglia's inflammatory phenotype in BPH/2J, characterized by an increased number of Iba1 + CD68 + cells, increased soma size and shortened processes, was partly reduced by amlodipine. CONCLUSION: Amlodipine attenuated the short-term memory impairment in aged hypertensive mice. Beyond its blood pressure lowering capacity, amlodipine may be cerebroprotective by modulating neuroinflammation.


Assuntos
Demência , Hipertensão , Animais , Camundongos , Anlodipino/farmacologia , Anlodipino/uso terapêutico , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/fisiologia , Cálcio , Bloqueadores dos Canais de Cálcio/uso terapêutico , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Hipertensão/genética , Microglia , Doenças Neuroinflamatórias
2.
J Cereb Blood Flow Metab ; 43(9): 1490-1502, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37132279

RESUMO

Blood-brain barrier (BBB) is known to be impaired in cerebral small vessel disease (SVD), and is measurable by dynamic-contrast enhancement (DCE)-MRI. In a cohort of 69 patients (42 sporadic, 27 monogenic SVD), who underwent 3T MRI, including DCE and cerebrovascular reactivity (CVR) sequences, we assessed the relationship of BBB-leakage hotspots to SVD lesions (lacunes, white matter hyperintensities (WMH), and microbleeds). We defined as hotspots the regions with permeability surface area product highest decile on DCE-derived maps within the white matter. We assessed factors associated with the presence and number of hotspots corresponding to SVD lesions in multivariable regression models adjusted for age, WMH volume, number of lacunes, and SVD type. We identified hotspots at lacune edges in 29/46 (63%) patients with lacunes, within WMH in 26/60 (43%) and at the WMH edges in 34/60 (57%) patients with WMH, and microbleed edges in 4/11 (36%) patients with microbleeds. In adjusted analysis, lower WMH-CVR was associated with presence and number of hotspots at lacune edges, and higher WMH volume with hotspots within WMH and at WMH edges, independently of the SVD type. In conclusion, SVD lesions frequently collocate with high BBB-leakage in patients with sporadic and monogenic forms of SVD.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Substância Branca , Humanos , Barreira Hematoencefálica/patologia , Imageamento por Ressonância Magnética , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/genética , Doenças de Pequenos Vasos Cerebrais/complicações , Substância Branca/patologia , Hemorragia Cerebral/patologia
3.
Eur Stroke J ; 8(1): 387-397, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37021189

RESUMO

Background: Hypertension is the leading modifiable risk factor for cerebral small vessel diseases (SVDs). Yet, it is unknown whether antihypertensive drug classes differentially affect microvascular function in SVDs. Aims: To test whether amlodipine has a beneficial effect on microvascular function when compared to either losartan or atenolol, and whether losartan has a beneficial effect when compared to atenolol in patients with symptomatic SVDs. Design: TREAT-SVDs is an investigator-led, prospective, open-label, randomised crossover trial with blinded endpoint assessment (PROBE design) conducted at five study sites across Europe. Patients aged 18 years or older with symptomatic SVD who have an indication for antihypertensive treatment and are suffering from either sporadic SVD and a history of lacunar stroke or vascular cognitive impairment (group A) or CADASIL (group B) are randomly allocated 1:1:1 to one of three sequences of antihypertensive treatment. Patients stop their regular antihypertensive medication for a 2-week run-in period followed by 4-week periods of monotherapy with amlodipine, losartan and atenolol in random order as open-label medication in standard dose. Outcomes: The primary outcome measure is cerebrovascular reactivity (CVR) as determined by blood oxygen level dependent brain MRI signal response to hypercapnic challenge with change in CVR in normal appearing white matter as primary endpoint. Secondary outcome measures are mean systolic blood pressure (BP) and BP variability (BPv). Discussion: TREAT-SVDs will provide insights into the effects of different antihypertensive drugs on CVR, BP, and BPv in patients with symptomatic sporadic and hereditary SVDs. Funding: European Union's Horizon 2020 programme. Trial registration: NCT03082014.


Assuntos
Anlodipino , Anti-Hipertensivos , Humanos , Anlodipino/farmacologia , Anti-Hipertensivos/farmacologia , Pressão Sanguínea , Atenolol/farmacologia , Losartan/farmacologia , Estudos Cross-Over , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
Lancet Neurol ; 22(11): 991-1004, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37863608

RESUMO

BACKGROUND: Hypertension is the leading risk factor for cerebral small vessel disease. We aimed to determine whether antihypertensive drug classes differentially affect microvascular function in people with small vessel disease. METHODS: We did a multicentre, open-label, randomised crossover trial with blinded endpoint assessment at five specialist centres in Europe. We included participants aged 18 years or older with symptomatic sporadic small vessel disease or cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and an indication for antihypertensive treatment. Participants were randomly assigned (1:1:1) to one of three sequences of antihypertensive treatment using a computer-generated multiblock randomisation, stratified by study site and patient group. A 2-week washout period was followed by three 4-week periods of oral monotherapy with amlodipine, losartan, or atenolol at approved doses. The primary endpoint was change in cerebrovascular reactivity (CVR) determined by blood oxygen level-dependent MRI response to hypercapnic challenge in normal-appearing white matter from the end of washout to the end of each treatment period. Efficacy analyses were done by intention-to-treat principles in all randomly assigned participants who had at least one valid assessment for the primary endpoint, and analyses were done separately for participants with sporadic small vessel disease and CADASIL. This trial is registered at ClinicalTrials.gov, NCT03082014, and EudraCT, 2016-002920-10, and is terminated. FINDINGS: Between Feb 22, 2018, and April 28, 2022, 75 participants with sporadic small vessel disease (mean age 64·9 years [SD 9·9]) and 26 with CADASIL (53·1 years [7·0]) were enrolled and randomly assigned to treatment. 79 participants (62 with sporadic small vessel disease and 17 with CADASIL) entered the primary efficacy analysis. Change in CVR did not differ between study drugs in participants with sporadic small vessel disease (mean change in CVR 1·8 × 10-4%/mm Hg [SE 20·1; 95% CI -37·6 to 41·2] for amlodipine; 16·7 × 10-4%/mm Hg [20·0; -22·3 to 55·8] for losartan; -7·1 × 10-4%/mm Hg [19·6; -45·5 to 31·1] for atenolol; poverall=0·39) but did differ in patients with CADASIL (15·7 × 10-4%/mm Hg [SE 27·5; 95% CI -38·3 to 69·7] for amlodipine; 19·4 × 10-4%/mm Hg [27·9; -35·3 to 74·2] for losartan; -23·9 × 10-4%/mm Hg [27·5; -77·7 to 30·0] for atenolol; poverall=0·019). In patients with CADASIL, pairwise comparisons showed that CVR improved with amlodipine compared with atenolol (-39·6 × 10-4%/mm Hg [95% CI -72·5 to -6·6; p=0·019) and with losartan compared with atenolol (-43·3 × 10-4%/mm Hg [-74·3 to -12·3]; p=0·0061). No deaths occurred. Two serious adverse events were recorded, one while taking amlodipine (diarrhoea with dehydration) and one while taking atenolol (fall with fracture), neither of which was related to study drug intake. INTERPRETATION: 4 weeks of treatment with amlodipine, losartan, or atenolol did not differ in their effects on cerebrovascular reactivity in people with sporadic small vessel disease but did result in differential treatment effects in patients with CADASIL. Whether antihypertensive drug classes differentially affect clinical outcomes in people with small vessel diseases requires further research. FUNDING: EU Horizon 2020 programme.


Assuntos
CADASIL , Hipertensão , Humanos , Pessoa de Meia-Idade , Idoso , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea , Losartan/farmacologia , Losartan/uso terapêutico , Atenolol/farmacologia , Atenolol/uso terapêutico , CADASIL/tratamento farmacológico , Estudos Cross-Over , Resultado do Tratamento , Hipertensão/tratamento farmacológico , Anlodipino/farmacologia , Anlodipino/uso terapêutico , Método Duplo-Cego
5.
Neurology ; 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606147

RESUMO

BACKGROUND: Magnetic resonance susceptibility-weighted imaging (SWI) can identify small brain blood vessels that contain deoxygenated blood due to its induced magnetic field disturbance. We observed focal clusters of possible dilated small vessels on SWI in white matter in severe small vessel disease (SVD). We assessed their prevalence, associations with SVD lesions and vascular reactivity in patients with sporadic SVD and in patients with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL). METHODS: Secondary cross-sectional analysis of a prospective multicentre observational study of patients with either sporadic SVD or CADASIL (INVESTIGATE-SVD) studied with 3 Tesla MRI including blood-oxygen-level-dependent-MRI cerebrovascular reactivity (CVR). Two independent raters evaluated SWI sequences to identify "vessel-clusters" in white matter as focal low-signal dots/lines with small vessel appearance (interrater agreement, kappa statistic= 0.66). We assessed per-patient and per-cluster associations with SVD lesions type and severity on structural MRI sequences. We also assessed CVR within and at 2-voxel concentric intervals around the vessel-clusters using contralateral volumes as reference. RESULTS: Amongst the 77 patients enrolled, 76 had usable SWI sequences, 45 with sporadic SVD [mean age 64 years (SD 11), 26 males (58%)] and 31 with CADASIL [53 years (11), 15 males (48%)]. We identified 94 vessel-clusters in 36/76 patients (15/45 sporadic SVD, 21/31 CADASIL). In covariate-adjusted analysis, patients with vessel-clusters had more lacunes (OR, 95%CI) (1.30, 1.05-1.62), higher white matter hyperintensity (WMH) volume (per-log10 increase, 1.92, 1.04-3.56), lower CVR in normal appearing white matter (per %/mmHg, 0.77 (0.60-0.99), compared with patients without vessel-clusters. Fifty-seven of 94 vessel-clusters (61%) corresponded to non-cavitated or partially-cavitated WMH on Fluid Attenuated Inversion Recovery, and 37/94 (39%) to complete cavities. CVR magnitude was lower than in corresponding contralateral volumes [mean difference (SD), t, p] within vessel-cluster volumes [-0.00046 (0.00088), -3.021, 0.005) and in surrounding volume expansion shells up to 4 voxels [-0.00011 (0.00031), -2.140, 0.039; and -0.00010 (0.00027), -2.295, 0.028] in vessel-clusters with complete cavities, but not in vessel-clusters without complete cavitation. CONCLUSIONS: Vessel-clusters might correspond to maximally dilated vessels in white matter that are approaching complete tissue injury and cavitation. The pathophysiological significance of this new feature warrants further longitudinal investigation.

6.
Neurology ; 96(17): e2192-e2200, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33762423

RESUMO

OBJECTIVE: To investigate the 2-year change in parenchymal diffusivity, a quantitative marker of microstructural tissue condition, and the relationship with baseline blood-brain barrier (BBB) permeability, in tissue at risk, i.e., the perilesional zone surrounding white matter hyperintensities (WMH) in patients with cerebral small vessel disease (cSVD). METHODS: Patients with sporadic cSVD (lacunar stroke or mild vascular cognitive impairment) underwent 3T MRI at baseline, including dynamic contrast-enhanced MRI to quantify BBB permeability (i.e., leakage volume and rate) and intravoxel incoherent motion imaging (IVIM), a diffusion technique that provides parenchymal diffusivity D. After 2 years, IVIM was repeated. We assessed the relation between BBB leakage measures at baseline and change in parenchymal diffusivity (∆D) over 2 years in the perilesional zones (divided in 2-mm contours) surrounding WMH. RESULTS: We analyzed 43 patients (age 68 ± 12 years, 58% male). In the perilesional zones, ∆D increased 0.10% (confidence interval [CI] 0.07-0.013%) (p < 0.01) per 2 mm closer to the WMH. Furthermore, ∆D over 2 years showed a positive correlation with both baseline BBB leakage volume (r = 0.29 [CI 0.06-0.52], p = 0.013) and leakage rate (r = 0.24 [CI 0.02-0.47], p = 0.034). CONCLUSION: BBB leakage at baseline is related to the 2-year change in parenchymal diffusivity in the perilesional zone of WMH. These results support the hypothesis that BBB impairment might play an early role in subsequent microstructural white matter degeneration as part of the pathophysiology of cSVD.


Assuntos
Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Substância Branca/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Disfunção Cognitiva/fisiopatologia , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Substância Cinzenta/fisiopatologia , Humanos , Leucoaraiose/fisiopatologia , Masculino , Pessoa de Meia-Idade
7.
Geroscience ; 43(4): 1643-1652, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34160780

RESUMO

Blood-brain barrier (BBB) dysfunction is one of the pathophysiological mechanisms in cerebral small vessel disease (SVD). Previously, it was shown that BBB leakage volume is larger in patients with SVD compared with controls. In this study, we investigated the link between BBB leakage and cognitive decline over 2 years in patients with cSVD. At baseline, 51 patients with clinically overt cSVD (lacunar stroke or mild vascular cognitive impairment) received a dynamic contrast-enhanced MRI scan to quantify BBB permeability in the normal-appearing white matter (NAWM), white matter hyperintensities (WMH), cortical grey matter (CGM), and deep grey matter (DGM). Cognitive function in the domain executive function, information processing speed, and memory was measured in all patients at baseline and after 2 years. The association between baseline BBB leakage and cognitive decline over 2 years was determined with multivariable linear regression analysis, corrected for age, sex, educational level, baseline WMH volume, and baseline brain volume. Regression analyses showed that higher baseline leakage volume and rate in the NAWM and CGM were significantly associated with increased overall cognitive decline. Furthermore, higher baseline leakage volume in the NAWM and CGM, and higher baseline leakage rate in the CGM were significantly associated with increased decline in executive function. This longitudinal study showed that higher BBB leakage at baseline is associated with stronger cognitive decline, specifically in executive function, over 2 years of follow-up in patients with cSVD. These results emphasize the key role of BBB disruption in the pathophysiology and clinical progression of cSVD.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Disfunção Cognitiva , Barreira Hematoencefálica , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Seguimentos , Humanos , Estudos Longitudinais
8.
Cereb Circ Cogn Behav ; 2: 100020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36324725

RESUMO

Background: Sporadic cerebral small vessel disease (SVD) and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) share clinical and neuroimaging features and possibly vascular dysfunction(s). However few studies have included both conditions, assessed more than one vascular dysfunction simultaneously, or included more than one centre. The INVESTIGATE-SVDs study will assess several cerebrovascular dysfunctions with MRI in participants with sporadic SVD or CADASIL at three European centres. Methods: We will recruit participants with sporadic SVDs (ischaemic stroke or vascular cognitive impairment) and CADASIL in Edinburgh, Maastricht and Munich. We will perform detailed clinical and neuropsychological phenotyping of the participants, and neuroimaging including structural MRI, cerebrovascular reactivity MRI (CVR: using carbon dioxide challenge), phase contrast MRI (arterial, venous and CSF flow and pulsatility), dynamic contrast-enhanced MRI (blood brain barrier (BBB) leakage) and multishell diffusion imaging. Participants will measure their blood pressure (BP) and its variability over seven days using a telemetric device. Discussion: INVESTIGATE-SVDs will assess the relationships of BBB integrity, CVR, pulsatility and CSF flow in sporadic SVD and CADASIL using a multisite, multimodal MRI protocol. We aim to establish associations between these measures of vascular function, risk factors particularly BP and its variability, and brain parenchymal lesions in these two SVD phenotypes. Additionally we will test feasibility of complex multisite MRI, provide reliable intermediary outcome measures and sample size estimates for future trials.

9.
Theranostics ; 10(21): 9512-9527, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32863942

RESUMO

Rationale: Hypertension is a major risk factor for cerebral small vessel disease, the most prevalent cause of vascular cognitive impairment. As we have shown, hypertension induced by a prolonged Angiotensin II infusion is associated with increased permeability of the blood-brain barrier (BBB), chronic activation of microglia and myelin loss. In this study we therefore aim to determine the contribution of microglia to hypertension-induced cognitive impairment in an experimental hypertension model by a pharmacological depletion approach. Methods: For this study, adult Cx3Cr1 gfp/wtxThy1 yfp/0 reporter mice were infused for 12 weeks with Angiotensin II or saline and subgroups were treated with PLX5622, a highly selective CSF1R tyrosine kinase inhibitor. Systolic blood pressure (SBP) was measured via tail-cuff. Short- and long-term spatial memory was assessed during an Object Location task and a Morris Water Maze task (MWM). Microglia depletion efficacy was assessed by flow cytometry and immunohistochemistry. BBB leakages, microglia phenotype and myelin integrity were assessed by immunohistochemistry. Results: SBP, heart weight and carotid pulsatility were increased by Ang II and were not affected by PLX5622. Short-term memory was significantly impaired in Ang II hypertensive mice, and partly prevented in Ang II mice treated with PLX5622. Histological and flow cytometry analysis revealed almost complete ablation of microglia and a 60% depletion of brain resident perivascular macrophages upon CSF1R inhibition. Number and size of BBB leakages were increased in Ang II hypertensive mice, but not altered by PLX5622 treatment. Microglia acquired a pro-inflammatory phenotype at the site of BBB leakages in both Saline and Ang II mice and were successfully depleted by PLX5622. There was however no significant change in myelin integrity at the site of leakages. Conclusion: Our results show that depletion of microglia and PVMs, by CSF1R inhibition prevents short-term memory impairment in Ang II induced hypertensive mice. We suggest this beneficial effect is mediated by the major decrease of pro-inflammatory microglia within BBB leakages. This novel finding supports the critical role of brain immune cells in the pathogenesis of hypertension-related cognitive impairment. An adequate modulation of microglia /PVM density and phenotype may constitute a relevant approach to prevent and/or limit the progression of vascular cognitive impairment.


Assuntos
Angiotensina II/farmacologia , Disfunção Cognitiva/prevenção & controle , Inibidores Enzimáticos/farmacologia , Hipertensão/induzido quimicamente , Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Hipertensão/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Microglia/metabolismo , Compostos Orgânicos/farmacologia
10.
Front Neurosci ; 13: 1291, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866808

RESUMO

Cerebral small vessels feed and protect the brain parenchyma thanks to the unique features of the blood-brain barrier. Cerebrovascular dysfunction is therefore seen as a detrimental factor for the initiation of several central nervous system (CNS) disorders, such as stroke, cerebral small vessel disease (cSVD), and Alzheimer's disease. The main working hypothesis linking cerebrovascular dysfunction to brain disorders includes the contribution of neuroinflammation. While our knowledge on microglia cells - the brain-resident immune cells - has been increasing in the last decades, the specific populations of microglia and macrophages surrounding brain vessels, vessel-associated microglia (VAM), and perivascular macrophages (PVMs), respectively, have been overlooked. This review aims to summarize the knowledge gathered on VAM and PVMs, to discuss existing knowledge gaps of importance for later studies and to summarize evidences for their contribution to cerebrovascular dysfunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA