Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-30670434

RESUMO

Lantibiotics present an attractive scaffold for the development of novel antibiotics. We report here a novel lantibiotic for the treatment of Clostridium difficile infection. The lead compounds were selected from a library of over 700 single- and multiple-substitution variants of the lantibiotic mutacin 1140 (MU1140). The best performers in vitro and in vivo were further used to challenge Golden Syrian hamsters orally in a Golden Syrian hamster model of Clostridium difficile-associated disease (CDAD) in a dose-response format, resulting in the selection of OG716 as the lead compound. This lantibiotic was characterized by a 50% effective dose of 23.85 mg/kg of body weight/day (10.97 µmol/kg/day) in this model. Upon oral administration of the maximum feasible dose (≥1,918 mg/kg/day), no observable toxicities or side effects were noted, and no effect on intestinal motility was observed. Compartmentalization to the gastrointestinal tract was confirmed. MU1140-derived variants offer a large pipeline for the development of novel antibiotics for the treatment of several indications and are particularly attractive considering their novel mechanism of action. Based on the currently available data, OG716 has an acceptable profile for further development for the treatment of CDAD.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Infecções por Clostridium/tratamento farmacológico , Administração Oral , Animais , Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Antibacterianos/química , Bacteriocinas/administração & dosagem , Bacteriocinas/efeitos adversos , Bacteriocinas/química , Disponibilidade Biológica , Ceco/microbiologia , Infecções por Clostridium/mortalidade , Contagem de Colônia Microbiana , Relação Dose-Resposta a Droga , Feminino , Esvaziamento Gástrico/efeitos dos fármacos , Masculino , Dose Máxima Tolerável , Mesocricetus , Ratos Wistar
2.
Toxicol Appl Pharmacol ; 374: 32-40, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31034929

RESUMO

Clostridium difficile associated disease (CDAD) is the leading infectious cause of antibiotic-associated diarrhea and colitis in the United States. Both the incidence and severity of CDAD have been increased over the past two decades. We evaluated the maximum tolerated dose (MTD) and toxicokinetics of OG253, a novel lantibiotic in development for the treatment of CDAD. OG253 was orally administered to Wistar Han rats as enteric-coated capsules in a one-day dose escalation study, followed by a seven-day repeated dose toxicokinetics study. All three doses of OG253 (6.75, 27 and 108 mg/day) were generally well-tolerated with no treatment-related clinical signs, alterations in body weight or food consumption in both one-day acute tolerability and seven-days repeated dose tolerability and toxicokinetics study. OG253 capsule administration neither significantly alter the weight of organs nor affect the hematology, coagulation, clinical biochemistry parameters and urine pH compared to placebo capsule administered rats. LC-MS/MS analysis did not detect OG253 in the plasma, indicating that OG253 is not absorbed into the blood from the rat gastrointestinal tract. Glandular atrophy of the rectal mucosa was noticed in two out of six rats administered with a high dose of OG253. Surprisingly, we found that OG253 treatment significantly lowered both serum cholesterol and triglyceride levels in both sexes of rats. Overall, there was a 29.8 and 61.38% decrease in the serum cholesterol and triglyceride levels, respectively as compared to placebo-treated rats. The well-tolerated high dose of OG253 (425.7 mg/kg/day) is recommended as the MTD for safety and efficacy studies. Further preclinical study is needed to evaluate the safety profile of OG253 under longer exposure.


Assuntos
Bacteriocinas/administração & dosagem , Bacteriocinas/toxicidade , Animais , Bacteriocinas/química , Bacteriocinas/farmacocinética , Cápsulas , Relação Dose-Resposta a Droga , Feminino , Masculino , Estrutura Molecular , Distribuição Aleatória , Ratos , Ratos Wistar , Toxicocinética
3.
Nat Chem Biol ; 8(10): 814-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22941045

RESUMO

Thaxtomin phytotoxins produced by plant-pathogenic Streptomyces species contain a nitro group that is essential for phytotoxicity. The N,N'-dimethyldiketopiperazine core of thaxtomins is assembled from L-phenylalanine and L-4-nitrotryptophan by a nonribosomal peptide synthetase, and nitric oxide synthase-generated NO is incorporated into the nitro group, but the biosynthesis of the nonproteinogenic amino acid L-4-nitrotryptophan is unclear. Here we report that TxtE, a unique cytochrome P450, catalyzes L-tryptophan nitration using NO and O(2).


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Indóis/metabolismo , Óxido Nítrico/metabolismo , Piperazinas/metabolismo , Plantas/microbiologia , Streptomyces/metabolismo , Triptofano/metabolismo , Biocatálise
4.
J Bacteriol ; 194(8): 1919-26, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22328678

RESUMO

Escherichia coli cells normally require RNase E activity to propagate and form colonies. Using random Tn10 insertion mutagenesis, we screened for second-site suppressor mutations that restore colony-forming ability (CFA) to E. coli cells lacking RNase E function and found mutations in three separate chromosomal loci that had this phenotype. Restoration of CFA by mutations in two of the genes identified was observed only in nutrient-poor medium, whereas the effects of mutation of the ATP-dependent RNA helicase DeaD were medium independent. Suppression of the rne mutant phenotype by inactivation of deaD was partial, as rne deaD doubly mutant bacteria had a greatly prolonged generation time and grew as filamentous chains in liquid medium. Moreover, we found that CFA restoration by deaD inactivation requires normal expression of the endogenous rng gene in doubly mutant rne deaD cells. Second-site suppression by deaD mutation was attributable specifically to ablation of the helicase activity of DeaD and was reversed by adventitious expression of RhlE or RNase R, both of which can unwind double-stranded RNA. Our results suggest a previously unsuspected role for RNA secondary structure as a determinant of RNase E essentiality.


Assuntos
RNA Helicases DEAD-box/metabolismo , Endorribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Cromossomos Bacterianos , RNA Helicases DEAD-box/genética , Endorribonucleases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Deleção de Genes , Regulação Enzimológica da Expressão Gênica/fisiologia , Mutagênese Insercional , Plasmídeos/genética
5.
Nature ; 429(6987): 79-82, 2004 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15129284

RESUMO

Nitric oxide (NO) is a potent intercellular signal in mammals that mediates key aspects of blood pressure, hormone release, nerve transmission and the immune response of higher organisms. Proteins homologous to full-length mammalian nitric oxide synthases (NOSs) are found in lower multicellular organisms. Recently, genome sequencing has shown that some bacteria contain genes coding for truncated NOS proteins; this is consistent with reports of NOS-like activities in bacterial extracts. Biological functions for bacterial NOSs are unknown, but have been presumed to be analogous to their role in mammals. Here we describe a gene in the plant pathogen Streptomyces turgidiscabies that encodes a NOS homologue, and we reveal its role in nitrating a dipeptide phytotoxin required for plant pathogenicity. High similarity between bacterial NOSs indicates a general function in biosynthetic nitration; thus, bacterial NOSs constitute a new class of enzymes. Here we show that the primary function of Streptomyces NOS is radically different from that of mammalian NOS. Surprisingly, mammalian NO signalling and bacterial biosynthetic nitration share an evolutionary origin.


Assuntos
Arginina/análogos & derivados , Indóis/metabolismo , Nitratos/metabolismo , Óxido Nítrico Sintase/metabolismo , Piperazinas/metabolismo , Streptomyces/enzimologia , Arginina/metabolismo , Deleção de Genes , Genes Bacterianos/genética , Indóis/química , Dados de Sequência Molecular , Óxido Nítrico Sintase/genética , Nitritos/metabolismo , Nitrogênio/metabolismo , Piperazinas/química , Plantas/efeitos dos fármacos , Streptomyces/genética , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo
6.
PLoS One ; 13(6): e0197467, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29894469

RESUMO

Lantibiotics continue to offer an untapped pipeline for the development of novel antibiotics. We report here the discovery of a novel lantibiotic for the treatment of C. difficile infection (CDI). The leads were selected from a library of over 300 multiple substitution variants of the lantibiotic Mutacin 1140 (MU1140). Top performers were selected based on testing for superior potency, solubility, manufacturability, and physicochemical and/or metabolic stability in biologically-relevant systems. The best performers in vitro were further evaluated orally in the Golden Syrian hamster model of CDAD. In vivo testing ultimately identified OG716 as the lead compound, which conferred 100% survival and no relapse at 3 weeks post infection. MU1140-derived variants are particularly attractive for further clinical development considering their novel mechanism of action.


Assuntos
Bacteriocinas/administração & dosagem , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/tratamento farmacológico , Animais , Clostridioides difficile/patogenicidade , Infecções por Clostridium/microbiologia , Cricetinae , Modelos Animais de Doenças , Humanos , Mesocricetus
7.
Chem Biol Drug Des ; 92(6): 1940-1953, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30010233

RESUMO

Lantibiotics represent a large untapped pipeline of attractive scaffolds for the development of novel antibiotics. Saturation mutagenesis was employed to substitute every amino acid of a lantibiotic called mutacin 1140 (MU1140), creating an unbiased expression library of 418 variants that was used to study the permissiveness to mutagenesis and the "drugability" of several compounds. Contrasting previous reports, the results from this study supported that not all residues involved in lanthionine bridge formation were critical for maintaining optimal activity. While substitutions in lanthionine bridges in Ring A, C, and D invariably lead to inactive variants, permissive substitutions in Abu8 and Ala11 (Ring B) were observed, albeit infrequently. Further, the data generated suggested that the unsaturated bond from Dha5 (Ser5) may not be critically involved in Lipid-II binding but still important for conferring optimal activity. This study identified additional permissive mutations of Ser5, including Ser5His, Ser5Met, Ser5Gln, and Ser5Leu. In contrast, no permissive substitutions were identified for Dhb14, which suggested that this residue may be critical for optimal activity. Novel blueprints are proposed for directing further development of MU1140 variants and other lantibiotics, which may enable the rational design, development, manufacture, and formulation of an entirely new class of anti-infectives.


Assuntos
Bacteriocinas/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Bacteriocinas/genética , Bacteriocinas/farmacologia , Biblioteca Gênica , Testes de Sensibilidade Microbiana , Mutagênese Sítio-Dirigida , Peptídeos/genética , Peptídeos/farmacologia , Plasmídeos/genética , Plasmídeos/metabolismo , Streptococcus/química , Streptococcus/genética , Streptococcus/metabolismo , Relação Estrutura-Atividade
8.
Front Microbiol ; 9: 415, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615987

RESUMO

Lantibiotics offer an untapped pipeline for the development of novel antibiotics to treat serious Gram-positive (+) infections including Clostridium difficile. Mutacin 1140 (MU1140) is a lantibiotic produced by Streptococcus mutans and acts via a novel mechanism of action, which may limit the development of resistance. This study sought to identify a lead compound for the treatment of C. difficile associated diarrhea (CDAD). Compounds were selected from a saturation mutagenesis library of 418 single amino acid variants of MU1140. Compounds were produced by small scale fermentation, purified, characterized and then subjected to a panel of assays aimed at identifying the best performers. The screening assays included: in vitro susceptibility testing [MIC against Micrococcus luteus, Clostridium difficile, vancomycin-resistant enterococci (VRE), Staphylococcus aureus, Streptococcus pneumonia, Mycobacterium phlei, and Pseudomonas aeruginosa; cytotoxicity screening on HepG2 hepatocytes; in vitro pharmacological profiling with the Safety Screen 44TM, metabolic and chemical stability in biologically relevant fluids (FaSSGF, FaSSIF and serum); and efficacy in vivo]. Several lantibiotic compounds had better MIC against C. difficile, compared to vancomycin, but not against other bacterial species tested. The Safety Screen 44TMin vitro pharmacological profiling assay suggested that this class of compounds has relatively low overall toxicity and that compound OG253 (MU1140, Phe1Ile) is not likely to present inadvertent off-target effects, as evidenced by a low promiscuity score. The in vitro cytotoxicity assay also indicated that this class of compounds was characterized by low toxicity; the EC50 of OG253 was 636 mg/mL on HepG2 cells. The half-life in simulated gastric fluid was >240 min. for all compound tested. The stability in simulated intestinal fluid ranged between a half-life of 5 min to >240 min, and paralleled the half-life in serum. OG253 ultimately emerged as the lead compound based on superior in vivo efficacy along with an apparent lack of relapse in a hamster model of infection. The lessons learned from this report are applicable to therapeutic lanthipeptides in general and may assist in the design of novel molecules with improved pharmacological, therapeutic and physicochemical profiles. The data presented also support the continued clinical development of OG253 as a novel antibiotic against CDAD that could prevent recurrence of the infection.

9.
Nitric Oxide ; 12(1): 46-53, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15631947

RESUMO

Evidence for the involvement of a bacterial nitric oxide synthase (NOS) in the biosynthesis of a phytotoxin is presented. Several species of Streptomyces bacteria produce secondary metabolites with unusual nitrogen groups, such as thaxtomin A (ThxA), which contains a nitroindole moiety. ThxA is a phytotoxin made by three pathogenic Streptomyces species that cause common scab of potato. All three species possess a gene homologous to the oxygenase domain of murine inducible NOS, and this gene, nos, is essential for normal levels of ThxA production. We grew Streptomyces turgidiscabies in the presence of several known NOS inhibitors and a nitric oxide (NO) scavenger to determine their effect on ThxA production. The NO scavenger (CPTIO) and four NOS inhibitors (NAME, NMMA, AG, and 7-NI) reduced ThxA production without affecting bacterial growth. A strain of S. turgidiscabies from which the nos gene had been deleted was grown in the presence of three NO donors (DEANO, SIN, and SNAP), and all three partially restored ThxA production. Our data suggest that bacterial nitric oxide synthases may, at least in part, produce NO for biosynthetic purposes, rather than for cellular signaling, as they do in mammals.


Assuntos
Inibidores Enzimáticos/farmacologia , Indóis/metabolismo , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Piperazinas/metabolismo , Streptomyces/química , Arginina/farmacologia , Sequestradores de Radicais Livres/farmacologia , Guanidinas/farmacologia , Indazóis/farmacologia , Estrutura Molecular , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/biossíntese , Doadores de Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , Streptomyces/classificação , Streptomyces/metabolismo , ômega-N-Metilarginina/farmacologia
10.
Mol Microbiol ; 55(4): 1025-33, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15686551

RESUMO

Potato scab is a globally important disease caused by polyphyletic plant pathogenic Streptomyces species. Streptomyces acidiscabies, Streptomyces scabies and Streptomyces turgidiscabies possess a conserved biosynthetic pathway for the nitrated dipeptide phytotoxin thaxtomin. These pathogens also possess the nec1 gene which encodes a necrogenic protein that is an independent virulence factor. In this article we describe a large (325-660 kb) pathogenicity island (PAI) conserved among these three plant pathogenic Streptomyces species. A partial DNA sequence of this PAI revealed the thaxtomin biosynthetic pathway, nec1, a putative tomatinase gene, and many mobile genetic elements. In addition, the PAI from S. turgidiscabies contains a plant fasciation (fas) operon homologous to and colinear with the fas operon in the plant pathogen Rhodococcus fascians. The PAI was mobilized during mating from S. turgidiscabies to the non-pathogens Streptomyces coelicolor and Streptomyces diastatochromogenes on a 660 kb DNA element and integrated site-specifically into a putative integral membrane lipid kinase. Acquisition of the PAI conferred a pathogenic phenotype on S. diastatochromogenes but not on S. coelicolor. This PAI is the first to be described in a Gram-positive plant pathogenic bacterium and is responsible for the emergence of new plant pathogenic Streptomyces species in agricultural systems.


Assuntos
Doenças das Plantas/microbiologia , Plantas/microbiologia , Streptomyces/patogenicidade , Sequência de Bases , DNA Bacteriano/genética , Enzimas/genética , Proteínas de Plantas/genética , Solanum tuberosum/microbiologia , Streptomyces/classificação , Streptomyces/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA