Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(7): 1257-1269, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806707

RESUMO

The circadian clock is a critical regulator of immunity, and this circadian control of immune modulation has an essential function in host defense and tumor immunosurveillance. Here we use a single-cell RNA sequencing approach and a genetic model of colorectal cancer to identify clock-dependent changes to the immune landscape that control the abundance of immunosuppressive cells and consequent suppression of cytotoxic CD8+ T cells. Of these immunosuppressive cell types, PD-L1-expressing myeloid-derived suppressor cells (MDSCs) peak in abundance in a rhythmic manner. Disruption of the epithelial cell clock regulates the secretion of cytokines that promote heightened inflammation, recruitment of neutrophils and the subsequent development of MDSCs. We also show that time-of-day anti-PD-L1 delivery is most effective when synchronized with the abundance of immunosuppressive MDSCs. Collectively, these data indicate that circadian gating of tumor immunosuppression informs the timing and efficacy of immune checkpoint inhibitors.


Assuntos
Antígeno B7-H1 , Relógios Circadianos , Inibidores de Checkpoint Imunológico , Células Supressoras Mieloides , Animais , Camundongos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Relógios Circadianos/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Camundongos Endogâmicos C57BL , Ritmo Circadiano/imunologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapia , Neoplasias Colorretais/tratamento farmacológico , Microambiente Tumoral/imunologia , Tolerância Imunológica , Humanos , Feminino , Linhagem Celular Tumoral , Análise de Célula Única , Terapia de Imunossupressão , Citocinas/metabolismo , Masculino
2.
Mol Cell ; 83(23): 4255-4271.e9, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37995687

RESUMO

Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows. Here, we demonstrate that transcription-associated RNA degradation by the nuclear RNA exosome and Integrator is a regulatory mechanism that controls the productive transcription of most genes and many ERVs involved in preimplantation development. Disrupting nuclear RNA catabolism promotes dedifferentiation to a totipotent-like state characterized by defects in RNAPII elongation and decreased expression of long genes (gene-length asymmetry). Our results indicate that RNA catabolism is a core regulatory module of gene networks that safeguards RNAPII activity, ERV expression, cell identity, and developmental potency.


Assuntos
Retrovirus Endógenos , Retrovirus Endógenos/genética , RNA Nuclear , Epigênese Genética , Heterocromatina , Expressão Gênica
3.
Nature ; 620(7972): 181-191, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37380767

RESUMO

The adult human breast is comprised of an intricate network of epithelial ducts and lobules that are embedded in connective and adipose tissue1-3. Although most previous studies have focused on the breast epithelial system4-6, many of the non-epithelial cell types remain understudied. Here we constructed the comprehensive Human Breast Cell Atlas (HBCA) at single-cell and spatial resolution. Our single-cell transcriptomics study profiled 714,331 cells from 126 women, and 117,346 nuclei from 20 women, identifying 12 major cell types and 58 biological cell states. These data reveal abundant perivascular, endothelial and immune cell populations, and highly diverse luminal epithelial cell states. Spatial mapping using four different technologies revealed an unexpectedly rich ecosystem of tissue-resident immune cells, as well as distinct molecular differences between ductal and lobular regions. Collectively, these data provide a reference of the adult normal breast tissue for studying mammary biology and diseases such as breast cancer.


Assuntos
Mama , Perfilação da Expressão Gênica , Análise de Célula Única , Adulto , Feminino , Humanos , Mama/citologia , Mama/imunologia , Mama/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Células Endoteliais/classificação , Células Endoteliais/metabolismo , Células Epiteliais/classificação , Células Epiteliais/metabolismo , Genômica , Imunidade
4.
Genes Dev ; 32(3-4): 244-257, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29483153

RESUMO

The discoidin domain receptor 1 (DDR1) is overexpressed in breast carcinoma cells. Low DDR1 expression is associated with worse relapse-free survival, reflecting its controversial role in cancer progression. We detected DDR1 on luminal cells but not on myoepithelial cells of DDR1+/+ mice. We found that DDR1 loss compromises cell adhesion, consistent with data that older DDR1-/- mammary glands had more basal/myoepithelial cells. Basal cells isolated from older mice exerted higher traction forces than the luminal cells, in agreement with increased mammary branches observed in older DDR1-/- mice and higher branching by their isolated organoids. When we crossed DDR1-/- mice with MMTV-PyMT mice, the PyMT/DDR1-/- mammary tumors grew faster and had increased epithelial tension and matricellular fibrosis with a more basal phenotype and increased lung metastases. DDR1 deletion induced basal differentiation of CD90+CD24+ cancer cells, and the increase in basal cells correlated with tumor cell mitoses. K14+ basal cells, including K8+K14+ cells, were increased adjacent to necrotic fields. These data suggest that the absence of DDR1 provides a growth and adhesion advantage that favors the expansion of basal cells, potentiates fibrosis, and enhances necrosis/hypoxia and basal differentiation of transformed cells to increase their aggression and metastatic potential.


Assuntos
Receptor com Domínio Discoidina 1/genética , Neoplasias Mamárias Experimentais/patologia , Animais , Neoplasias da Mama/metabolismo , Hipóxia Celular , Receptor com Domínio Discoidina 1/metabolismo , Intervalo Livre de Doença , Células Epiteliais/metabolismo , Feminino , Fibrose , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/genética , Camundongos
5.
J Immunol ; 210(11): 1677-1686, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37083696

RESUMO

Transplantation of human neural stem cells (hNSCs) is a promising regenerative therapy to promote remyelination in patients with multiple sclerosis (MS). Transplantation of hNSCs has been shown to increase the number of CD4+CD25+Foxp3+ T regulatory cells (Tregs) in the spinal cords of murine models of MS, which is correlated with a strong localized remyelination response. However, the mechanisms by which hNSC transplantation leads to an increase in Tregs in the CNS remains unclear. We report that hNSCs drive the conversion of T conventional (Tconv) cells into Tregs in vitro. Conversion of Tconv cells is Ag driven and fails to occur in the absence of TCR stimulation by cognate antigenic self-peptides. Furthermore, CNS Ags are sufficient to drive this conversion in the absence of hNSCs in vitro and in vivo. Importantly, only Ags presented in the thymus during T cell selection drive this Treg response. In this study, we investigate the mechanisms by which hNSC Ags drive the conversion of Tconv cells into Tregs and may provide key insight needed for the development of MS therapies.


Assuntos
Esclerose Múltipla , Células-Tronco Neurais , Humanos , Camundongos , Animais , Linfócitos T Reguladores , Linfócitos T CD4-Positivos , Esclerose Múltipla/terapia , Ativação Linfocitária , Fatores de Transcrição Forkhead , Antígenos CD4
6.
Cell ; 141(1): 52-67, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20371345

RESUMO

Extracellular proteolysis mediates tissue homeostasis. In cancer, altered proteolysis leads to unregulated tumor growth, tissue remodeling, inflammation, tissue invasion, and metastasis. The matrix metalloproteinases (MMPs) represent the most prominent family of proteinases associated with tumorigenesis. Recent technological developments have markedly advanced our understanding of MMPs as modulators of the tumor microenvironment. In addition to their role in extracellular matrix turnover and cancer cell migration, MMPs regulate signaling pathways that control cell growth, inflammation, or angiogenesis and may even work in a nonproteolytic manner. These aspects of MMP function are reorienting our approaches to cancer therapy.


Assuntos
Metaloproteinases da Matriz/metabolismo , Neoplasias/metabolismo , Animais , Humanos , Inibidores de Metaloproteinases de Matriz , Neoplasias/tratamento farmacológico
7.
Breast Cancer Res ; 26(1): 5, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183074

RESUMO

Triple-negative breast cancer (TNBC) is highly aggressive with limited available treatments. Stromal cells in the tumor microenvironment (TME) are crucial in TNBC progression; however, understanding the molecular basis of stromal cell activation and tumor-stromal crosstalk in TNBC is limited. To investigate therapeutic targets in the TNBC stromal niche, we used an advanced human in vitro microphysiological system called the vascularized micro-tumor (VMT). Using single-cell RNA sequencing, we revealed that normal breast tissue stromal cells activate neoplastic signaling pathways in the TNBC TME. By comparing interactions in VMTs with clinical data, we identified therapeutic targets at the tumor-stromal interface with potential clinical significance. Combining treatments targeting Tie2 signaling with paclitaxel resulted in vessel normalization and increased efficacy of paclitaxel in the TNBC VMT. Dual inhibition of HER3 and Akt also showed efficacy against TNBC. These data demonstrate the potential of inducing a favorable TME as a targeted therapeutic approach in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Mama , Paclitaxel , Transdução de Sinais , Células Estromais , Microambiente Tumoral/genética
8.
Nat Methods ; 18(9): 1091-1102, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34413523

RESUMO

Mitochondria display complex morphology and movements, which complicates their segmentation and tracking in time-lapse images. Here, we introduce Mitometer, an algorithm for fast, unbiased, and automated segmentation and tracking of mitochondria in live-cell two-dimensional and three-dimensional time-lapse images. Mitometer requires only the pixel size and the time between frames to identify mitochondrial motion and morphology, including fusion and fission events. The segmentation algorithm isolates individual mitochondria via a shape- and size-preserving background removal process. The tracking algorithm links mitochondria via differences in morphological features and displacement, followed by a gap-closing scheme. Using Mitometer, we show that mitochondria of triple-negative breast cancer cells are faster, more directional, and more elongated than those in their receptor-positive counterparts. Furthermore, we show that mitochondrial motility and morphology in breast cancer, but not in normal breast epithelia, correlate with metabolic activity. Mitometer is an unbiased and user-friendly tool that will help resolve fundamental questions regarding mitochondrial form and function.


Assuntos
Neoplasias da Mama/patologia , Imageamento Tridimensional/métodos , Mitocôndrias , Software , Imagem com Lapso de Tempo/métodos , Algoritmos , Neoplasias da Mama/metabolismo , Células Cultivadas , Feminino , Humanos , Glândulas Mamárias Humanas/citologia , Mitocôndrias/metabolismo , NAD/metabolismo , Reprodutibilidade dos Testes , Neoplasias de Mama Triplo Negativas/patologia
9.
Nature ; 526(7571): 131-5, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26416748

RESUMO

Despite major advances in understanding the molecular and genetic basis of cancer, metastasis remains the cause of >90% of cancer-related mortality. Understanding metastasis initiation and progression is critical to developing new therapeutic strategies to treat and prevent metastatic disease. Prevailing theories hypothesize that metastases are seeded by rare tumour cells with unique properties, which may function like stem cells in their ability to initiate and propagate metastatic tumours. However, the identity of metastasis-initiating cells in human breast cancer remains elusive, and whether metastases are hierarchically organized is unknown. Here we show at the single-cell level that early stage metastatic cells possess a distinct stem-like gene expression signature. To identify and isolate metastatic cells from patient-derived xenograft models of human breast cancer, we developed a highly sensitive fluorescence-activated cell sorting (FACS)-based assay, which allowed us to enumerate metastatic cells in mouse peripheral tissues. We compared gene signatures in metastatic cells from tissues with low versus high metastatic burden. Metastatic cells from low-burden tissues were distinct owing to their increased expression of stem cell, epithelial-to-mesenchymal transition, pro-survival, and dormancy-associated genes. By contrast, metastatic cells from high-burden tissues were similar to primary tumour cells, which were more heterogeneous and expressed higher levels of luminal differentiation genes. Transplantation of stem-like metastatic cells from low-burden tissues showed that they have considerable tumour-initiating capacity, and can differentiate to produce luminal-like cancer cells. Progression to high metastatic burden was associated with increased proliferation and MYC expression, which could be attenuated by treatment with cyclin-dependent kinase (CDK) inhibitors. These findings support a hierarchical model for metastasis, in which metastases are initiated by stem-like cells that proliferate and differentiate to produce advanced metastatic disease.


Assuntos
Neoplasias da Mama/patologia , Progressão da Doença , Metástase Neoplásica/patologia , Células-Tronco Neoplásicas/patologia , Análise de Célula Única , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Separação Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/patologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Citometria de Fluxo , Perfilação da Expressão Gênica , Genes myc/genética , Humanos , Mesoderma/metabolismo , Mesoderma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Proc Natl Acad Sci U S A ; 114(12): 3121-3126, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28270600

RESUMO

The mammary gland consists of an adipose tissue that, in a process called branching morphogenesis, is invaded by a ductal epithelial network comprising basal and luminal epithelial cells. Stem and progenitor cells drive mammary growth, and their proliferation is regulated by multiple extracellular cues. One of the key regulatory pathways for these cells is the ß-catenin-dependent, canonical wingless-type MMTV integration site family (WNT) signaling pathway; however, the role of noncanonical WNT signaling within the mammary stem/progenitor system remains elusive. Here, we focused on the noncanonical WNT receptors receptor tyrosine kinase-like orphan receptor 2 (ROR2) and receptor-like tyrosine kinase (RYK) and their activation by WNT5A, one of the hallmark noncanonical WNT ligands, during mammary epithelial growth and branching morphogenesis. We found that WNT5A inhibits mammary branching morphogenesis in vitro and in vivo through the receptor tyrosine kinase ROR2. Unexpectedly, WNT5A was able to enhance mammary epithelial growth, which is in contrast to its next closest relative WNT5B, which potently inhibits mammary stem/progenitor proliferation. We found that RYK, but not ROR2, is necessary for WNT5A-mediated promotion of mammary growth. These findings provide important insight into the biology of noncanonical WNT signaling in adult stem/progenitor cell regulation and development. Future research will determine how these interactions go awry in diseases such as breast cancer.


Assuntos
Epitélio/metabolismo , Glândulas Mamárias Animais/metabolismo , Morfogênese , Via de Sinalização Wnt , Sequência de Aminoácidos , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Feminino , Regulação da Expressão Gênica , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Morfogênese/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores Wnt/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
12.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38948782

RESUMO

Despite the major roles of choroid plexus epithelial cells (CPECs) in brain homeostasis and repair, their developmental lineage and diversity remain undefined. In simplified differentiations from human pluripotent stem cells, derived CPECs (dCPECs) displayed canonical properties and dynamic multiciliated phenotypes that interacted with Aß uptake. Single dCPEC transcriptomes over time correlated well with human organoid and fetal CPECs, while pseudotemporal and cell cycle analyses highlighted the direct CPEC origin from neuroepithelial cells. In addition, time series analyses defined metabolic (type 1) and ciliogenic dCPECs (type 2) at early timepoints, followed by type 1 diversification into anabolic-secretory (type 1a) and catabolic-absorptive subtypes (type 1b) as type 2 cells contracted. These temporal patterns were then confirmed in independent derivations and mapped to prenatal stages using human tissues. In addition to defining the prenatal lineage of human CPECs, these findings suggest new dynamic models of ChP support for the developing human brain.

13.
Cell Rep ; 42(6): 112590, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37261952

RESUMO

Distinct metabolic conditions rewire circadian-clock-controlled signaling pathways leading to the de novo construction of signal transduction networks. However, it remains unclear whether metabolic hallmarks unique to pluripotent stem cells (PSCs) are connected to clock functions. Reprogramming somatic cells to a pluripotent state, here we highlighted non-canonical functions of the circadian repressor CRY1 specific to PSCs. Metabolic reprogramming, including AMPK inactivation and SREBP1 activation, was coupled with the accumulation of CRY1 in PSCs. Functional assays verified that CRY1 is required for the maintenance of self-renewal capacity, colony organization, and metabolic signatures. Genome-wide occupancy of CRY1 identified CRY1-regulatory genes enriched in development and differentiation in PSCs, albeit not somatic cells. Last, cells lacking CRY1 exhibit differential gene expression profiles during induced PSC (iPSC) reprogramming, resulting in impaired iPSC reprogramming efficiency. Collectively, these results suggest the functional implication of CRY1 in pluripotent reprogramming and ontogenesis, thereby dictating PSC identity.


Assuntos
Relógios Circadianos , Criptocromos , Células-Tronco Pluripotentes , Diferenciação Celular , Reprogramação Celular , Relógios Circadianos/genética , Transdução de Sinais , Animais , Camundongos , Criptocromos/metabolismo
14.
Nat Genet ; 55(4): 595-606, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914836

RESUMO

Women with germline BRCA1 mutations (BRCA1+/mut) have increased risk for hereditary breast cancer. Cancer initiation in BRCA1+/mut is associated with premalignant changes in breast epithelium; however, the role of the epithelium-associated stromal niche during BRCA1-driven tumor initiation remains unclear. Here we show that the premalignant stromal niche promotes epithelial proliferation and mutant BRCA1-driven tumorigenesis in trans. Using single-cell RNA sequencing analysis of human preneoplastic BRCA1+/mut and noncarrier breast tissues, we show distinct changes in epithelial homeostasis including increased proliferation and expansion of basal-luminal intermediate progenitor cells. Additionally, BRCA1+/mut stromal cells show increased expression of pro-proliferative paracrine signals. In particular, we identify pre-cancer-associated fibroblasts (pre-CAFs) that produce protumorigenic factors including matrix metalloproteinase 3 (MMP3), which promotes BRCA1-driven tumorigenesis in vivo. Together, our findings demonstrate that precancerous stroma in BRCA1+/mut may elevate breast cancer risk through the promotion of epithelial proliferation and an accumulation of luminal progenitor cells with altered differentiation.


Assuntos
Neoplasias da Mama , Glândulas Mamárias Humanas , Feminino , Humanos , Mutação , Proteína BRCA1/genética , Neoplasias da Mama/patologia , Transformação Celular Neoplásica/metabolismo , Glândulas Mamárias Humanas/metabolismo , Carcinogênese/patologia , Células Estromais/patologia
15.
Sci Adv ; 9(27): eadd9984, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418531

RESUMO

Macrophages are essential for skeletal muscle homeostasis, but how their dysregulation contributes to the development of fibrosis in muscle disease remains unclear. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six clusters and unexpectedly found that none corresponded to traditional definitions of M1 or M2 macrophages. Rather, the predominant macrophage signature in dystrophic muscle was characterized by high expression of fibrotic factors, galectin-3 (gal-3) and osteopontin (Spp1). Spatial transcriptomics, computational inferences of intercellular communication, and in vitro assays indicated that macrophage-derived Spp1 regulates stromal progenitor differentiation. Gal-3+ macrophages were chronically activated in dystrophic muscle, and adoptive transfer assays showed that the gal-3+ phenotype was the dominant molecular program induced within the dystrophic milieu. Gal-3+ macrophages were also elevated in multiple human myopathies. These studies advance our understanding of macrophages in muscular dystrophy by defining their transcriptional programs and reveal Spp1 as a major regulator of macrophage and stromal progenitor interactions.


Assuntos
Macrófagos , Transcriptoma , Camundongos , Animais , Humanos , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Fibrose
16.
bioRxiv ; 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37163043

RESUMO

The adult human breast comprises an intricate network of epithelial ducts and lobules that are embedded in connective and adipose tissue. While previous studies have mainly focused on the breast epithelial system, many of the non-epithelial cell types remain understudied. Here, we constructed a comprehensive Human Breast Cell Atlas (HBCA) at single-cell and spatial resolution. Our single-cell transcriptomics data profiled 535,941 cells from 62 women, and 120,024 nuclei from 20 women, identifying 11 major cell types and 53 cell states. These data revealed abundant pericyte, endothelial and immune cell populations, and highly diverse luminal epithelial cell states. Our spatial mapping using three technologies revealed an unexpectedly rich ecosystem of tissue-resident immune cells in the ducts and lobules, as well as distinct molecular differences between ductal and lobular regions. Collectively, these data provide an unprecedented reference of adult normal breast tissue for studying mammary biology and disease states such as breast cancer.

17.
bioRxiv ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37131694

RESUMO

The monocytic/macrophage system is essential for skeletal muscle homeostasis, but its dysregulation contributes to the pathogenesis of muscle degenerative disorders. Despite our increasing knowledge of the role of macrophages in degenerative disease, it still remains unclear how macrophages contribute to muscle fibrosis. Here, we used single-cell transcriptomics to determine the molecular attributes of dystrophic and healthy muscle macrophages. We identified six novel clusters. Unexpectedly, none corresponded to traditional definitions of M1 or M2 macrophage activation. Rather, the predominant macrophage signature in dystrophic muscle was characterized by high expression of fibrotic factors, galectin-3 and spp1. Spatial transcriptomics and computational inferences of intercellular communication indicated that spp1 regulates stromal progenitor and macrophage interactions during muscular dystrophy. Galectin-3 + macrophages were chronically activated in dystrophic muscle and adoptive transfer assays showed that the galectin-3 + phenotype was the dominant molecular program induced within the dystrophic milieu. Histological examination of human muscle biopsies revealed that galectin-3 + macrophages were also elevated in multiple myopathies. These studies advance our understanding of macrophages in muscular dystrophy by defining the transcriptional programs induced in muscle macrophages, and reveal spp1 as a major regulator of macrophage and stromal progenitor interactions.

18.
Biomolecules ; 12(7)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35883430

RESUMO

Recent advances in single-cell transposase-accessible chromatin using a sequencing assay (scATAC-seq) allow cellular heterogeneity dissection and regulatory landscape reconstruction with an unprecedented resolution. However, compared to bulk-sequencing, its ultra-high missingness remarkably reduces usable reads in each cell type, resulting in broader, fuzzier peak boundary definitions and limiting our ability to pinpoint functional regions and interpret variant impacts precisely. We propose a weakly supervised learning method, scEpiLock, to directly identify core functional regions from coarse peak labels and quantify variant impacts in a cell-type-specific manner. First, scEpiLock uses a multi-label classifier to predict chromatin accessibility via a deep convolutional neural network. Then, its weakly supervised object detection module further refines the peak boundary definition using gradient-weighted class activation mapping (Grad-CAM). Finally, scEpiLock provides cell-type-specific variant impacts within a given peak region. We applied scEpiLock to various scATAC-seq datasets and found that it achieves an area under receiver operating characteristic curve (AUC) of ~0.9 and an area under precision recall (AUPR) above 0.7. Besides, scEpiLock's object detection condenses coarse peaks to only ⅓ of their original size while still reporting higher conservation scores. In addition, we applied scEpiLock on brain scATAC-seq data and reported several genome-wide association studies (GWAS) variants disrupting regulatory elements around known risk genes for Alzheimer's disease, demonstrating its potential to provide cell-type-specific biological insights in disease studies.


Assuntos
Epigenômica , Estudo de Associação Genômica Ampla , Cromatina/genética , Epigênese Genética , Aprendizado de Máquina Supervisionado
19.
Cell Rep ; 40(5): 111155, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35926463

RESUMO

Delayed and often impaired wound healing in the elderly presents major medical and socioeconomic challenges. A comprehensive understanding of the cellular/molecular changes that shape complex cell-cell communications in aged skin wounds is lacking. Here, we use single-cell RNA sequencing to define the epithelial, fibroblast, immune cell types, and encompassing heterogeneities in young and aged skin during homeostasis and identify major changes in cell compositions, kinetics, and molecular profiles during wound healing. Our comparative study uncovers a more pronounced inflammatory phenotype in aged skin wounds, featuring neutrophil persistence and higher abundance of an inflammatory/glycolytic Arg1Hi macrophage subset that is more likely to signal to fibroblasts via interleukin (IL)-1 than in young counterparts. We predict systems-level differences in the number, strength, route, and signaling mediators of putative cell-cell communications in young and aged skin wounds. Our study exposes numerous cellular/molecular targets for functional interrogation and provides a hypothesis-generating resource for future wound healing studies.


Assuntos
Fibroblastos , Cicatrização , Comunicação Celular , Fibroblastos/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Pele
20.
Cell Rep ; 38(2): 110240, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021086

RESUMO

Maintenance of undifferentiated, long-lived, and often quiescent stem cells in the basal compartment is important for homeostasis and regeneration of multiple epithelial tissues, but the molecular mechanisms that coordinately control basal cell fate and stem cell quiescence are elusive. Here, we report an epithelium-intrinsic requirement for Zeb1, a core transcriptional inducer of epithelial-to-mesenchymal transition, for mammary epithelial ductal side branching and for basal cell regenerative capacity. Our findings uncover an evolutionarily conserved role of Zeb1 in promoting basal cell fate over luminal differentiation. We show that Zeb1 loss results in increased basal cell proliferation at the expense of quiescence and self-renewal. Moreover, Zeb1 cooperates with YAP to activate Axin2 expression, and inhibition of Wnt signaling partially restores stem cell function to Zeb1-deficient basal cells. Thus, Zeb1 is a transcriptional regulator that maintains both basal cell fate and stem cell quiescence, and it functions in part through suppressing Wnt signaling.


Assuntos
Linhagem da Célula/genética , Células-Tronco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Células 3T3 , Animais , Proteína Axina/metabolismo , Diferenciação Celular , Proliferação de Células , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição , Via de Sinalização Wnt/fisiologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA