Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(29): 10910-10919, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34255504

RESUMO

As the only ribosomally encoded N-substituted amino acid, proline promotes distinct secondary protein structures. The high proline content in collagen, the most abundant protein in the human body, is crucial to forming its hallmark structure: the triple-helix. For over five decades, proline has been considered compulsory for synthetic designs aimed at recapitulating collagen's structure and properties. Here we describe that N-substituted glycines (N-glys), also known as peptoid residues, exhibit a general triple-helical propensity similar to or greater than proline, enabling synthesis of stable triple-helical collagen mimetic peptides (CMPs) with unprecedented side chain diversity. Supported by atomic-resolution crystal structures as well as circular dichroism and computational characterizations spanning over 30 N-gly-containing CMPs, we discovered that N-glys stabilize the triple-helix primarily by sterically preorganizing individual chains into the polyproline-II helix. We demonstrated that N-glys with exotic side chains including a "click"-able alkyne and a photosensitive side chain enable CMPs for functional applications including the spatiotemporal control of cell adhesion and migration. The structural principles uncovered in this study open up opportunities for a new generation of collagen-mimetic therapeutics and materials.


Assuntos
Colágeno/síntese química , Glicina/química , Peptídeos/síntese química , Colágeno/química , Estrutura Molecular , Peptídeos/química
2.
J Proteome Res ; 19(8): 2926-2932, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32500704

RESUMO

Collagen remodeling in normal and pathologic conditions releases numerous collagen fragments into biological fluids. Although a few collagen fragments have been tested as biomarkers for disease indication, most occur at trace levels, making them nearly impossible to detect even with modern analytical tools. Here we report a new way to enrich collagen fragments that allows complete peptidomic analysis of collagen fragments in urine. Enrichment is made possible by dimeric collagen hybridizing peptides (CHPs) that bind collagen fragments originating from the triple helical regions of all collagen types with minimal sequence bias. LC-MS/MS analysis of enriched mouse urine revealed an average of 383 collagenous peptide fragments per sample (compared to 34 for unenriched sample), which could be mapped to all types of mouse collagens in the SwissProt database including FACITs and MACITs. Hierarchical clustering of a selected panel of the detected fragments separated osteopenic mice from healthy mice. The results demonstrate dimeric CHP's ability to enrich collagen fragments from biological fluid and its potential to aid peptidomics-based disease detection and biomarker discovery.


Assuntos
Colágeno , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida , Camundongos , Fragmentos de Peptídeos , Peptídeos
3.
Chem Sci ; 13(42): 12567-12576, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36382282

RESUMO

Nearly 30% of human proteins have tandem repeating sequences. Structural understanding of the terminal repeats is well-established for many repeat proteins with the common α-helix and ß-sheet foldings. By contrast, the sequence-structure interplay of the terminal repeats of the collagen triple-helix remains to be fully explored. As the most abundant human repeat protein and the most prevalent structural component of the extracellular matrix, collagen features a hallmark triple-helix formed by three supercoiled polypeptide chains of long repeating sequences of the Gly-X-Y triplets. Here, with CD characterization of 28 collagen-mimetic peptides (CMPs) featuring various terminal motifs, as well as DSC measurements, crystal structure analysis, and computational simulations, we show that CMPs only differing in terminal repeat may have distinct end structures and stabilities. We reveal that the cross-chain hydrogen bonding mediated by the terminal repeat is key to maintaining the triple-helix's end structure, and that disruption of it with a single amide to carboxylate substitution can lead to destabilization as drastic as 19 °C. We further demonstrate that the terminal repeat also impacts how strong the CMP strands form hybrid triple-helices with unfolded natural collagen chains in tissue. Our findings provide a spatial profile of hydrogen bonding within the CMP triple-helix, marking a critical guideline for future crystallographic or NMR studies of collagen, and algorithms for predicting triple-helix stability, as well as peptide-based collagen assemblies and materials. This study will also inspire new understanding of the sequence-structure relationship of many other complex structural proteins with repeating sequences.

4.
Acta Biomater ; 118: 153-160, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33035697

RESUMO

Tendons are collagenous soft tissues that transmit loads between muscles and bones. Depending on their anatomical function, tendons are classified as positional or energy-storing with differing biomechanical and biochemical properties. We recently demonstrated that during monotonic stretch of positional tendons, permanent denatured collagen begins accumulating upon departing the linear region of the stress-strain curve. However, it is unknown if this observation is true during mechanical overload of other types of tendons. Therefore, the purpose of this study was to investigate the onset of collagen denaturation relative to applied strain, and whether it differs between the two tendon types. Rat tail tendon (RTT) fascicles and rat flexor digitorum longus (FDL) tendons represented positional and energy-storing tendons, respectively. The samples were stretched to incremental levels of strain, then stained with fluorescently labeled collagen hybridizing peptides (CHPs); the CHP fluorescence was measured to quantify denatured collagen. Denatured collagen in both positional and energy-storing tendons began to increase at the yield strain, upon leaving the linear region of the stress-strain curve as the sample started to permanently deform. Despite significant differences between the two tendon types, it appears that collagen denaturation is initiated at tissue yield during monotonic stretch, and the fundamental mechanism of failure is the same for the two types of tendons. At tissue failure, positional tendons had double the percentage of denatured collagen compared to energy-storing tendons, with no difference between 0% control groups. These results help to elucidate the etiology of subfailure injury and rupture in functionally distinct tendons.


Assuntos
Colágeno , Tendões , Animais , Fenômenos Biomecânicos , Fenômenos Físicos , Ratos , Ruptura
5.
Macromol Biosci ; 15(1): 52-62, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25476588

RESUMO

To address the downside of conventional photo-patterning which can alter the chemical composition of protein scaffolds, we developed a non-covalent photo-patterning strategy for gelatin (denatured collagen) hydrogels that utilizes UV activated triple helical hybridization of caged collagen mimetic peptide (caged CMP). Here we present 2D and 3D photo-patterning of gelatin hydrogels enabled by the caged CMP derivatives, as well as creation of concentration gradients of CMPs. CMP's specificity for binding to gelatin allows patterning of almost any synthetic or natural gelatin-containing matrix, such as gelatin-methacrylate hydrogels and corneal tissues. This is a radically new tool for immobilizing drugs to natural tissues and for functionalizing scaffolds for complex tissue formation.


Assuntos
Biomimética/métodos , Colágeno/química , Sistemas de Liberação de Medicamentos/métodos , Gelatina/análise , Hidrogéis/química , Nanomedicina/métodos , Peptídeos/química , Colágeno/metabolismo , Gelatina/metabolismo , Hidrogéis/metabolismo , Nanomedicina/tendências , Peptídeos/metabolismo , Fotoquímica/métodos , Ligação Proteica , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA